
Abstract
Style is what separates the good from the great.
-- Bozhidar Batsov

One thing has always bothered me as Ruby developer - Python devs have a great programming style
reference (PEP-8) and we never got an official guide documenting Ruby coding style and best
practices. And I do believe that style matters.

This document was originally created when I, as the Technical Lead of the company which I work for,
was asked by our CTO to create some internal documents describing good style and best practices for
Ruby programming. I started off by building upon this existing style guide, since I concurred with
many of the points in it. At some point I decided that the work I was doing might be interesting to
members of the Ruby community in general and that the world had little need of another internal
company guideline. But the world could certainly benefit from a community-driven and community-
sanctioned set of practices, idioms and style prescriptions for Ruby programming.

Since the inception of the guide I've received a lot of feedback from members of the exceptional Ruby
community around the world. Thanks for all the suggestions and the support! Together we can make a
resource beneficial to each and every Ruby developer out there.

The Ruby Style Guide
This Ruby style guide recommends best practices so that real-world Ruby programmers can write code
that can be maintained by other real-world Ruby programmers. A style guide that reflects real-world
usage gets used, and a style guide that holds to an ideal that has been rejected by the people it is
supposed to help risks not getting used at all – no matter how good it is.

The guide is separated into several sections of related rules. I've tried to add the rationale behind the
rules (if it's omitted I've assumed that is pretty obvious).

I didn't come up with all the rules out of nowhere - they are mostly based on my extensive career as a
professional software engineer, feedback and suggestions from members of the Ruby community and
various highly regarded Ruby programming resources, such as "Programming Ruby 1.9" and "The
Ruby Programming Language".

The guide is still a work in progress - some rules are lacking examples, some rules don't have examples
that illustrate them clearly enough. In due time these issues will be addressed - just keep them in mind
for now.

You can generate a PDF or an HTML copy of this guide using rake

To generate an HTML version

$ rake generate:html

You should have a README.html file generated

To generate an PDF version

$ rake generate:pdf

You should have a README.pdf file generated

To use these tasks you must have installed pygments and wkhtmltopdf

https://github.com/chneukirchen/styleguide
http://pragprog.com/book/ruby3/programming-ruby-1-9
http://www.amazon.com/Ruby-Programming-Language-David-Flanagan/dp/0596516177

pygments can be installed using Python's easy_install command

sudo easy_install pygments

wkhtmltopdf can be installed in one of two methods

1. Install by hand (recommended):

https://github.com/jdpace/PDFKit/wiki/Installing-WKHTMLTOPDF

2. Try using the wkhtmltopdf-binary gem (mac + linux i386)

gem install wkhtmltopdf-binary

Formatting

Nearly everybody is convinced that every style but their own is ugly and unreadable.
Leave out the "but their own" and they're probably right...
-- Jerry Coffin (on indentation)

Use UTF-8 as the source file encoding.
Use two-space indent, no tabs. Tabs are represented by a different number of spaces on various
operating systems (and their presentation can be manually configured as well) which usually
results in code that looks different than intended in some (many) people's editors.

Use Unix-style line endings. (Linux/OSX users are covered by default, Windows users have to be
extra careful.)

If you're using Git you might want to add the following configuration setting to protect
your project from Windows line endings creeping in:

$ git config --global core.autocrlf true

Use spaces around operators, after commas, colons and semicolons, around { and before }.
Whitespace might be (mostly) irrelevant to the Ruby interpreter, but its proper use is the key to
writing easily readable code.

sum = 1 + 2
a, b = 1, 2
1 > 2 ? true : false; puts 'Hi'
[1, 2, 3].each { |e| puts e }

The only exception is when using the exponent operator:

bad
e = M * c ** 2

good
e = M * c**2

No spaces after (, [or before],).

some(arg).other
[1, 2, 3].length

https://github.com/jdpace/PDFKit/wiki/Installing-WKHTMLTOPDF

Indent when as deep as case. I know that many would disagree with this one, but it's the style
established in both the "The Ruby Programming Language" and "Programming Ruby".

case
when song.name == 'Misty'
 puts 'Not again!'
when song.duration > 120
 puts 'Too long!'
when Time.now.hour > 21
 puts "It's too late"
else
 song.play
end

kind = case year
 when 1850..1889 then 'Blues'
 when 1890..1909 then 'Ragtime'
 when 1910..1929 then 'New Orleans Jazz'
 when 1930..1939 then 'Swing'
 when 1940..1950 then 'Bebop'
 else 'Jazz'
 end

Use an empty line before the return value of a method (unless it only has one line), and an empty
line between defs.

def some_method
 do_something
 do_something_else

 result
end

def some_method
 result
end

Use RDoc and its conventions for API documentation. Don't put an empty line between the
comment block and the def.

Use empty lines to break up a method into logical paragraphs.

Keep lines fewer than 80 characters.

Emacs users might want to put this in their config (e.g. ~/.emacs.d/init.el):

Vim users might want to put this in their config (e.g. ~/.vimrc):

" VIM 7.3+ has support for highlighting a specified column.
if exists('+colorcolumn')
 set colorcolumn=80
else
 " Emulate
 au BufWinEnter * let w:m2=matchadd('ErrorMsg', '\%80v.\+', -1)
endif

Textmate

Avoid trailing whitespace.

Emacs users might want to put this in their config (ideally combine this with the previous
example):

Vim users might want to put this in their ~/.vimrc:

autocmd BufWritePre * :%s/\s\+$//e

Or if you don't want vim to touch possibly vital space based files, use:

set listchars+=trail:â‌‌

Feel free to use some other character if you don't like the suggested one.

Textmate users might want to take a look at the Uber Glory bundle.

Syntax

Use def with parentheses when there are arguments. Omit the parentheses when the method
doesn't accept any arguments.

 def some_method
 # body omitted
 end

 def some_method_with_arguments(arg1, arg2)
 # body omitted
 end

Never use for, unless you know exactly why. Most of the time iterators should be used instead.

arr = [1, 2, 3]

bad
for elem in arr do
 puts elem
end

good
arr.each { |elem| puts elem }

Never use then for multi-line if/unless.

bad
if some_condition then
 # body omitted
end

good
if some_condition
 # body omitted
end

Favor the ternary operator over if/then/else/end constructs. It's more common and obviously
more concise.

https://github.com/glennr/uber-glory-tmbundle

bad
result = if some_condition then something else something_else end

good
result = some_condition ? something : something_else

Use one expression per branch in a ternary operator. This also means that ternary operators
must not be nested. Prefer if/else constructs in these cases.

bad
some_condition ? (nested_condition ? nested_something : nested_something_else) : something_else

good
if some_condition
 nested_condition ? nested_something : nested_something_else
else
 something_else
end

Never use if x: ... - it is removed in Ruby 1.9. Use the ternary operator instead.

bad
result = if some_condition: something else something_else end

good
result = some_condition ? something : something_else

Never use if x; Use the ternary operator instead.

Use when x then ... for one-line cases. The alternative syntax when x: ... is removed in
Ruby 1.9.

Never use when x; See the previous rule.

Use &&/|| for boolean expressions, and/or for control flow. (Rule of thumb: If you have to use
outer parentheses, you are using the wrong operators.)

boolean expression
if some_condition && some_other_condition
 do_something
end

control flow
document.saved? or document.save!

Avoid multi-line ?: (the ternary operator), use if/unless instead.

Favor modifier if/unless usage when you have a single-line body. Another good alternative is
the usage of control flow and/or.

bad
if some_condition
 do_something
end

good
do_something if some_condition

another good option
some_condition and do_something

Favor unless over if for negative conditions (or control flow or).

bad
do_something if !some_condition

good
do_something unless some_condition

another good option
some_condition or do_something

Never use unless with else. Rewrite these with the positive case first.

#bad
unless success?
 puts 'failure'
else
 puts 'success'
end

#good
if success?
 puts 'success'
else
 puts 'failure'
end

Omit parentheses around parameters for methods that are part of an internal DSL (e.g. Rake,
Rails, RSpec), methods that are with "keyword" status in Ruby (e.g. attr_reader, puts) and
attribute access methods. Use parentheses around the arguments of all other method
invocations.

class Person
 attr_reader name, age

 # omitted
end

temperance = Person.new('Temperance', 30)
temperance.name

puts temperance.age

x = Math.sin(y)
array.delete(e)

Prefer {...} over do...end for single-line blocks. Avoid using {...} for multi-line blocks
(multiline chaining is always ugly). Always use do...end for "control flow" and "method
definitions" (e.g. in Rakefiles and certain DSLs). Avoid do...end when chaining.

names = ["Bozhidar", "Steve", "Sarah"]

good
names.each { |name| puts name }

bad
names.each do |name|
 puts name
end

good
names.select { |name| name.start_with?("S") }.map { |name| name.upcase }

bad
names.select do |name|
 name.start_with?("S")
end.map { |name| name.upcase }

Some will argue that multiline chaining would look OK with the use of {...}, but they should ask
themselves - it this code really readable and can't the blocks contents be extracted into nifty
methods.

Avoid return where not required.

bad
def some_method(some_arr)
 return some_arr.size
end

good
def some_method(some_arr)
 some_arr.size
end

Use spaces around the = operator when assigning default values to method parameters:

bad
def some_method(arg1=:default, arg2=nil, arg3=[])
 # do something...
end

good
def some_method(arg1 = :default, arg2 = nil, arg3 = [])
 # do something...
end

While several Ruby books suggest the first style, the second is much more prominent in practice
(and arguably a bit more readable).

Avoid line continuation (\) where not required. In practice, avoid using line continuations at all.

bad
result = 1 - \
 2

good (but still ugly as hell)
result = 1 \
 - 2

Using the return value of = (an assignment) is ok.

if v = array.grep(/foo/) ...

Use ||= freely.

set name to Bozhidar, only if it's nil or false
name ||= 'Bozhidar'

Avoid using Perl-style special variables (like $0-9, $`, etc.). They are quite cryptic and their use
in anything but one-liner scripts is discouraged.

Never put a space between a method name and the opening parenthesis.

bad
f (3 + 2) + 1

good
f(3 + 2) + 1

If the first argument to a method begins with an open parenthesis, always use parentheses in the
method invocation. For example, write f((3 + 2) + 1).

Always run the Ruby interpreter with the -w option so it will warn you if you forget either of the
rules above!

Naming

Use snake_case for methods and variables.
Use CamelCase for classes and modules. (Keep acronyms like HTTP, RFC, XML uppercase.)
Use SCREAMING_SNAKE_CASE for other constants.
The names of predicate methods (methods that return a boolean value) should end in a question
mark. (i.e. Array#empty?).
The names of potentially "dangerous" methods (i.e. methods that modify self or the arguments,
exit!, etc.) should end with an exclamation mark.

The length of an identifier determines its scope. Use one-letter variables for short block/method
parameters, according to this scheme:

a,b,c: any object
d: directory names
e: elements of an Enumerable
ex: rescued exceptions
f: files and file names
i,j: indexes
k: the key part of a hash entry
m: methods
o: any object
r: return values of short methods
s: strings
v: any value
v: the value part of a hash entry
x,y,z: numbers

And in general, the first letter of the class name if all objects are of that type.

When using inject with short blocks, name the arguments |a, e| (accumulator, element).

When defining binary operators, name the argument other.

def +(other)
 # body omitted
end

Prefer map over collect, find over detect, select over find_all, size over length. This is not a
hard requirement; if the use of the alias enhances readability, it's ok to use it.

Comments

Good code is its own best documentation. As you're about to add a comment, ask yourself,
"How can I improve the code so that this comment isn't needed?" Improve the code and
then document it to make it even clearer.
-- Steve McConnell

Write self-documenting code and ignore the rest of this section. Seriously!
Comments longer than a word are capitalized and use punctuation. Use one space after periods.

Avoid superfluous comments.

bad
counter += 1 # increments counter by one

Keep existing comments up-to-date. No comment is better than an outdated comment.

Avoid writing comments to explain bad code. Refactor the code to make it self-explanatory. (Do
or do not - there is no try.)

Annotations

Annotations should usually be written on the line immediately above the relevant code.

The annotation keyword is followed by a colon and a space, then a note describing the problem.

If multiple lines are required to describe the problem, subsequent lines should be indented two
spaces after the #.

def bar
 # FIXME: This has crashed occasionally since v3.2.1. It may
 # be related to the BarBazUtil upgrade.
 baz(:quux)
end

In cases where the problem is so obvious that any documentation would be redundant,
annotations may be left at the end of the offending line with no note. This usage should be the
exception and not the rule.

def bar
 sleep 100 # OPTIMIZE
end

Use TODO to note missing features or functionality that should be added at a later date.

Use FIXME to note broken code that needs to be fixed.

Use OPTIMIZE to note slow or inefficient code that may cause performance problems.

http://en.wikipedia.org/wiki/Sentence_spacing

Use HACK to note code smells where questionable coding practices were used and should be
refactored away.

Use REVIEW to note anything that should be looked at to confirm it is working as intended. For
example: REVIEW: Are we sure this is how the client does X currently?

Use other custom annotation keywords if it feels appropriate, but be sure to document them in
your project's README or similar.

Classes

Always supply a proper to_s method.

class Person
 attr_reader :first_name, :last_name

 def initialize(first_name, last_name)
 @first_name = first_name
 @last_name = last_name
 end

 def to_s
 "#@first_name #@last_name"
 end
end

Use the attr family of functions to define trivial accessors or mutators.

Consider adding factory methods to provide additional sensible ways to create instances of a
particular class.

Prefer duck-typing over inheritance.

Avoid the usage of class (@@) variables due to their "nasty" behavior in inheritance.

Assign proper visibility levels to methods (private, protected) in accordance with their
intended usage. Don't go off leaving everything public (which is the default). After all we're
coding in Ruby now, not in Python.

Indent the public, protected, and private methods as much the method definitions they
apply to. Leave one blank line above them.

class SomeClass
 def public_method
 # ...
 end

 private
 def private_method
 # ...
 end
end

Use def self.method to define singleton methods. This makes the methods more resistant to
refactoring changes.

class TestClass
 # bad

 def TestClass.some_method
 # body omitted
 end

 # good
 def self.some_other_method
 # body omitted
 end

 # Also possible and convenient when you
 # have to define many singleton methods.
 class << self
 def first_method
 # body omitted
 end

 def second_method_etc
 # body omitted
 end
 end
end

Exceptions

Don't suppress exceptions.
Don't use exceptions for flow of control.
Avoid rescuing the Exception class.

Strings

Prefer string interpolation instead of string concatenation:

bad
email_with_name = user.name + ' <' + user.email + '>'

good
email_with_name = "#{user.name} <#{user.email}>"

Prefer single-quoted strings when you don't need string interpolation or special symbols such as
\t, \n, ', etc.

bad
name = "Bozhidar"

good
name = 'Bozhidar'

Don't use {} around instance variables being interpolated into a string.

class Person
 attr_reader :first_name, :last_name

 def initialize(first_name, last_name)
 @first_name = first_name
 @last_name = last_name
 end

 # bad

 def to_s
 "#{@first_name} #{@last_name}"
 end

 # good
 def to_s
 "#@first_name #@last_name"
 end
end

Avoid using String#+ when you need to construct large data chunks. Instead, use String#<<.
Concatenation mutates the string instance in-place and is always faster than String#+, which
creates a bunch of new string objects.

good and also fast
html = ''
html << '<h1>Page title</h1>'

paragraphs.each do |paragraph|
 html << "<p>#{paragraph}</p>"
end

Percent Literals

Use %w freely.

STATES = %w(draft open closed)

Use %() for single-line strings which require both interpolation and embedded double-quotes.
For multi-line strings, prefer heredocs.

bad (no interpolation needed)
%(<div class="text">Some text</div>)
should be '<div class="text">Some text</div>'

bad (no double-quotes)
%(This is #{quality} style)
should be "This is #{quality} style"

bad (multiple lines)
%(<div>\n#{exclamation}\n</div>)
should be a heredoc.

good (requires interpolation, has quotes, single line)
%(<tr><td class="name">#{name}</td>)

Use %r only for regular expressions matching more than one '/' character.

bad
%r(\s+)

still bad
%r(^/(.*)$)
should be /^\/(.*)$/

good
%r(^/blog/2011/(.*)$)

Avoid %q, %Q, %x, %s, and %W.

Prefer () as delimiters for all % literals.

Misc

Write ruby -w safe code.
Avoid hashes as optional parameters. Does the method do too much?
Avoid methods longer than 10 LOC (lines of code). Ideally, most methods will be shorter than 5
LOC. Empty lines do not contribute to the relevant LOC.
Avoid parameter lists longer than three or four parameters.
If you really have to, add "global" methods to Kernel and make them private.

Use class instance variables instead of global variables.

#bad
$foo_bar = 1

#good
class Foo
 class << self
 attr_accessor :bar
 end
end

Foo.bar = 1

Avoid alias when alias_method will do.

Use OptionParser for parsing complex command line options and ruby -s for trivial
command line options.

Write for Ruby 1.9. Don't use legacy Ruby 1.8 constructs.

Use the new JavaScript literal hash syntax.
Use the new lambda syntax.
Methods like inject now accept method names as arguments.

 [1, 2, 3].inject(:+)

Avoid needless metaprogramming.

Design

Code in a functional way, avoiding mutation when that makes sense.
Do not mutate arguments unless that is the purpose of the method.
Do not mess around in core classes when writing libraries. (Do not monkey patch them.)
Do not program defensively.
Keep the code simple and subjective. Each method should have a single, well-defined
responsibility.
Avoid more than three levels of block nesting.
Don't overdesign. Overly complex solutions tend to be brittle and hard to maintain.
Don't underdesign. A solution to a problem should be as simple as possible, but no simpler than
that. Poor initial design can lead to a lot of problems in the future.
Be consistent. In an ideal world, be consistent with these guidelines.
Use common sense.

http://www.erlang.se/doc/programming_rules.shtml#HDR11

Contributing
Nothing written in this guide is set in stone. It's my desire to work together with everyone interested in
Ruby coding style, so that we could ultimately create a resource that will be beneficial to the entire
Ruby community.

Feel free to open tickets or send pull requests with improvements. Thanks in advance for your help!

Spread the Word
A community-driven style guide is of little use to a community that doesn't know about its existence.
Tweet about the guide, share it with your friends and colleagues. Every comment, suggestion or
opinion we get makes the guide just a little bit better. And we want to have the best possible guide, don't
we?

