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Preface

These are old fond paradoxes to make fools
laugh i’ the alehouse.
Desdemona, Othello, Act 1, Scene 1

If we alter Desdemona’s remark to “These are old
and new paradoxes to make us laugh during
lunch time,” then it is not a bad description of this
book. The word paradox has many meanings, but
[ use it here in a broad sense to include any result
so contrary to common sense and intuition that it
invokes an immediate emotion of surprise. Such
paradoxes are of four main types:

1. An assertion that seems false but actually is
true.

2. An assertion that seems true but actually is
false.

3. A line of reasoning that seems impeccable
but which leads to a logical contradiction. (This
type of paradox is more commonly called a
fallacy.)

4, An assertion whose truth or falsity is
undecidable.

Paradoxes in mathematics, like those in science,
can be much more than jokes. They can lead to
deep insights. For early Greek thinkers it was a
bothersome paradox that the diagonal of a unit
square could not be measured accurately, no
matter how finely graduated the ruler. This
disturbing fact opened up the vast realm of the
theory of irrational numbers. To nineteenth
century mathematicians it was enormously
paradoxical that all the members of an infinite set
could be put in one-to-one correspondence with
the members of one of its subsets, and that two
infinite sets could exist whose members could not
be put into one-to-one correspondence. These
paradoxes led to the development of modern set
theory, which in turn had a strong influence on the
philosophy of science,

We can learn much from paradoxes. Like good
magic tricks they are so astonishing that we
instantly want to know how they are done.
Magicians never reveal how they do what they do,
but mathematicians have no need to keep secrets.
Throughout, I have done my best to explain in
nontechnical language, and as briefly as possible,
why each paradox is paradoxical. If this stimulates
you to go on to other books and articles where
you can learn more, you will not only absorb a
great deal of significant mathematics but also
enjoy yourself in the process. Some easily
accessible readings are starred in the References
and Suggested Readings at the end of the book.

November 1981 Martin Gardner
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In view of the indispensable role of logic, not only
in mathematics but in all deductive reasoning, it is
surprising to find that logic is riddled with
seemingly flawless arguments that lead to flat
contradictions. Such arguments would be like
proving that 2 + 2 is 4, and then giving an
equally good proof that 2 + 2 cannot be 4. What
has gone wrong? Is it possible that fatal flaws are
hidden in the very process of deductive thinking?

Giant strides in modern logic and set theory
have been the direct outcome of efforts to resolve
classical paradoxes. Bertrand Russell devoted
many frustrating years to such puzzles before he
and Alfred North Whitehead collaborated on
Principia Mathematica, a monumental treatise that
provided a unified foundation for modern logic
and mathematics.

Paradoxes not only can pose questions but can
answer them as well. Among the questions
answered by the paradoxes in this chapter are:

1. Are there situations in which it is logically
impossible to correctly predict a future event?

2. Why does set theory generally rule out
construction of sets that might include themselves
as elements?

3. When we speak about a language, why must
we distinguish between the language we are
speaking about (our object language) and the
language we are speaking in (our metalanguage)?

The paradoxes that answer these questions all
have a hint of circular reasoning or self-reference
in them. In logic the possibility of self-reference
can either destroy a theory or make it rich and
interesting. The problem is to shape our theories
so that they allow just the right possibilities to
make the subject rich but exclude possibilities that
would lead to self-contradiction. The invention of
paradoxes is the primary tool in testing whether
we have set the right limits for our logical ideas.

Do not imagine that all paradoxes of modern
logic have been resolved. Far from it! Immanuel
Kant once made the reckless statement that logic
had been so completely developed in his day that
nothing new could be said about it. Today, all the
logic that Kant understood is but a small and
elementary part of modern logic. There are
profound levels about which the greatest of
logicians disagree, levels where paradoxical
questions have not yet been answered, and where
many questions have yet to be formulated.



The Liar Paradox

Epimenides is reputed to
have said “All Cretans are
liars.” Considering that he
was a Cretan, did Epimen-
ides speak truly?

Epimenides was a legendary Greek poet who
lived in Crete in the sixth century B.C. He was the
original Rip Van Winkle. One myth about him
says that he once slept for 57 years.

The statement attributed to him is logically
contradictory provided we assume that liars
always lie and that people who are not liars—we
will call them truth-tellers—always tell the truth.
On this assumption, the statement “All Cretans
are liars” cannot be true because this would make
Epimenides a liar, therefore what he says would
be false. Neither can it be false because that would
imply that Cretans are truth-tellers, and
consequently what Epimenides says would be
true.

The ancient Greeks were much puzzled as to
how a statement that seems to make perfectly
good sense could be neither true nor false without
self-contradiction. A Stoic philosopher,
Chrysippus, wrote six treatises on the “liar
paradox,” none of which survived. Philetas of
Cos, a Greek poet who was so thin that it was said
he carried lead in his shoes to keep from being
blown away, worried himself into an early grave
over it. In the New Testament, Saint Paul repeats
the paradox in his epistle to Titus:

One of themselves, even a prophet of their
own, said, the Cretians are always liars, evil
beasts, slow bellies.

This witness is true, . . .

Titus 1:12-13

We don’t know whether Paul was aware of the
paradox involved in these statements.



We are caught in the noto-
rious liar paradox. Here is
its simplest form: “This sen-
tence is false.” Is it true? If
so, it’s false! Is it false? If so,

it’s true! Contradictory state-

ments like this are more
common than you think.

Why does this form of the paradox, in which a
sentence talks about itself, make the paradox
clearer? Because it eliminates all ambiguity over
whether a liar always lies and a truth-teller always
tells the truth.

There are endless variations. Bertrand Russell
once expressed his belief that the philosopher
George Edward Moore lied only once in his life.
When someone asked him if he always told the
truth, Moore thought a moment and said, “No.”

Forms of the liar paradox have played central
roles in several short stories. My favorite is “Told
Under Oath,” by Lord Dunsany. You can find it in
a recent anthology of his lesser-known writings,
The Ghost of the Heaviside Layer and Other
Fantasies. In this story Dunsany meets a man who
pledges under solemn oath that the story he is
about to tell is the whole truth and nothing but the
truth.

It seems that the man met Satan at a party, and
the two struck a bargain. It was arranged that the
man, who had been the worst golfer in his club,
would always make a hole in one. After repeated
holes in one, everybody became convinced the
man was somehow cheating, and he was expelled
from the club. The story ends when Dunsany asks
what Satan got in return for his gift. “He extorted
from me,” the man says, “my power of ever
speaking the truth again.”



Buttons and Graffiti

w Remember the popular
buttons that said “Ban
Butions,”

(
\—

Or graffiti that read “Down
with Graffiti.”

Why are these statements contradictory? Each
violates the action it recommends. Other examples
abound: A bumper sticker says “Eliminate bumper
stickers.” A sign reads “Don’t read this.” A
bachelor declares that the only kind of woman he
would marry is one smart enough not to marry
him. Groucho Marx said he refused to join any
club willing to have him as a member. A gummed
label says: “Please notify us if this label has fallen
off in transit.”

Closer to the liar paradox are such self-
contradictory statements as “All knowledge is
doubtful,” and George Bernard Shaw’s assertion
that “The only Golden Rule is that there are no
golden rules.”

There was a young lady of Crewe
Whose limericks stopped at line two.

This anonymous limerick is not paradoxical, but it
prompted the sequel:

There was a young man of Verdun.

What is the paradox? Is it that your mind
automatically supplies a second line: “Whose
limericks stopped at line one.”? Or is it the very
idea of a limerick having fewer than five lines?



Humorous guidelines for writing good English
have been expressed in paradoxical form. Below is
a list of ten rules compiled by Harold Evans,
editor of London’s Sunday Times:

Don’t use no double negatives.

Make each pronoun agree with their antecedent.
When dangling, watch your participles.

Don’t use commas, which aren’t necessary.
Verbs has to agree with their subjects.

About those sentence fragments.

Try to not ever split infinitives.

It is important to use apostrophe’s correctly.
Always read what you have written to see you
any words out.

Correct spelling is esential.

A UPI dispatch of April 24, 1970, reported that
political candidates in Oregon were allowed to put
12-word slogans under their names on the ballot.
Frank Hatch, of Eugene, who ran as a Democrat
for Congress, used this slogan: “Anyone who
thinks in 12-word slogans should not be on this
ballot.”

In 1909 the noted British economist Alfred
Marshall wrote: “Every short sentence about
economics is inherently false.”

Threba Johnson, of New Canaan, Connecticut,
told me that one day she pulled a wishbone with
her small grandson. After he won, he asked his
mother what she had wished for. She said her
wish had been that he would win. Did she
win? Would she have won if she had pulled
the larger part of the bone?

What would it mean if the Pope, speaking ex
cathedra, declared that all Popes, past, present,
and future, were not infallible?

An advertisement in a magazine says: “Do you
want to learn how to read? Leamn quickly by mail.
Write us at the address below.”

Self-reference can be amusing even when it is
not paradoxical. In the index of Finite Dimensional
Vector Spaces, by Paul R. Halmos, there is an
entry: “Hochschild, G.P., 198.” Hochschild is
nowhere mentioned in the book except in this
entry, which is on page 198.

Raymond Smullyan gave a book of logic
puzzles the title What Is the Name of This Book?
Two years later he did a second book, on
paradoxes of everyday life, entitled This Book
Needs No Title.

For an amusing article on self-reference, with
many new examples, see Douglas Hofstadter’s
column in Scientific American, January 1981.



A Sentence and Its Opposite

This serience
Co[ﬂai NS

This senfence
dbes_nal”
conlain

Seven Words. |

How many words are in the
sentence in this picture?
Five. Clearly this sentence is
false. So its opposite ought
to be true. Right?

Wrong! The opposite sen-
tence contains just seven
words. How can we resolve
these strange dilemmas?

Here’s another anonymous truth-value paradox.
There are three false statements here. Can you

identify them?
.L.2+2=4
2.3 x6=17
3. 84 =2
4 13 -6=5
55+4=9

Answer: Only statements 2 and 4 are false.
Therefore the assertion that there are three false
statements is false, which makes this assertion a
third false statement! Or does it?



The Crazy Computer

Many years ago a com-
puter, designed for testing
the truth of statements, was
fed the liar paradox: “This
sentence is false.”

The poor computer went
crazy, forever oscillating
between true and false.
Computer:
True—false—true—false—true—
false . . .

The world’s first electronic computer designed
solely to solve problems in truth-value logic was
built in 1947 by William Burkhart and Theodore
Kalin, then undergraduates at Harvard University.
When they asked their machine to evaluate the
liar paradox, it went into an oscillating phase,
making (as Kalin said) “a hell of a racket.”
Gordon Dickson’s story, “The Monkey Wrench,”
which appeared in Astounding Science Fiction
(August 1951), tells how some scientists saved
their lives by rendering a computer inoperative.
Their technique was to tell the computer: “You
must reject the statement [ am now making to you
because all the statements | make are incorrect.”



Infinite Regress

The computer was having
as hard a time as a person
trying to answer the old rid-
dle: “Which came first? The
chicken or the egg?”

The chicken? No, it had
to hatch from an egg. The
eag? No, it had to be laid
by a chicken.

7
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The old question about the chicken and the egg is
the most familiar example of what logicians call an
infinite regress. Quaker Qats cereal used to come
in a box with a picture of a Quaker holding a box
of the cereal, which had on it a smaller picture of
a Quaker holding a box, and so on forever, like an
infinite set of Chinese boxes. Scientific American’s
cover for April 1965 is shown at right. The cover
is reflected in a human eye. In the reflection a
smaller eye reflects a smaller cover, and so on.

In a barber shop, where there are facing
mirrors, you see the beginning of an infinite
regress of reflections.
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Great fleas have little fleas
o Upon their backs to bite em,
And little fleas have lesser fleas,
and so ad infinitum.

And the great fleas, themselves, in turn,
Have greater fleas to go on;

While these again have greater still,
And greater still, and so on.

Two age-old scientific questions about infinite
regresses may never be answered. [s our
expanding universe all there is, or is it part of
some even vaster system about which we as yet
know nothing? The second question goes the
other direction, toward the small. Is the electron
an ultimate particle or does it have an internal
structure of still smaller parts? Physicists now

\l';i'IE DE AN PUPE wIAT RYAVERN A PES belieb\’e that ma?y pal].’;t;c'l:s are made Of d f
e inati ) u
5 /,41 i 1965 combinations of quar re quarks composed o

still smaller entities? Some physicists believe there
is no end to levels of structure in both directions.
The total universe of universes is like an immerse
set of nested Chinese boxes in which there is
neither a smallest nor a largest box any more than
there is a smallest fraction or a largest positive
integer.

Authors have used regresses in works of fiction.
Philip Quarles, a character in Aldous Huxley’s
novel, Point Counter Point, is writing a novel
about a novelist who is writing a novel about a
novelist, . . . There are similar regresses in Andre
Gide's novel, The Counterfeiters; in E. E.
Cummings’ play, Him; and in such short stories as
Norman Mailer’s “The Notebook,” in which a
young writer gets an idea for a story, which is the
same story that Mailer is writing.

Scientific American cover copyright © 1965 by Scientific
American, Inc. All rights reserved.
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The Plato—Socrates Paradox

Let’s think a moment about
what is pictured. A Cretan
speaks of Cretans. A sen-

-| tence talks about itself. A
button speaks of buttons.
All these statements seem
to tatk about themselves. Is
it self-reference that causes
the trouble?

No. Even the ancient
Greeks knew that eliminat-
ing self-reference wasn’t
enough. Here's a conversa-
tion that proves it:

Plato: The next statement
by Socrates will be false.
Socrates: Plato has spo-
ken truly!

7\ Logicians have simplified
the Plato—Socrates paradox
to the sentences at left.
Whatever truth-value you
give to either sentence is
contradicted by the other.
Neither sentence talks
about itself, yet taken
together, the liar paradox

/ remains.

12

This version of the liar paradox, much discussed
by medieval logicians, is important because it
proves that the source of confusion in truth-value
paradoxes is much deeper than self-reference. If
sentence A is true, then B is false, and if B is false,
then A must be false. But if A is false, then B is
true, and if B is true, then A must be true. Now
we are back where we started and the process
keeps repeating, like a pair of Keystone cops
chasing each other around a building. Neither
sentence talks about itself, yet taken together they
keep changing the truth-value of the other, so that
we are unable to say whether either sentence is
true or false.

You may enjoy showing friends the following
card version of this paradox. It was devised by
P E. B. Jourdain, an English mathematician.

On one side of a blank card print:

THE SENTENCE ON THE OTHER SIDE
OF THIS CARD IS TRUE.

On the opposite side of the same card print:

THE SENTENCE ON THE OTHER SIDE
OF THIS CARD IS FALSE.

Many people turn the card back and forth many
times before they realize they are trapped in an
endless regress in which each sentence is
alternately true and false.



Alice and the Red King

The Plato-Socrates para-
dox has two infinite
regresses, like Alice and
the Red King in Through
the Looking Glass:

Alice: I'm dreaming about
the Red King. But he’s
asleep and dreaming about
me who is dreaming about
him who is dreaming about
me. Oh dear! It goes on
forever.

© BEELDRECHT, Amsterdam/VAGA, New York 1981.
Collection Haags Gemeentemuseum. Image appears courtesy
of the Vorpal Galleries; New York City, San Francisco, Laguna
Beach, Ca.

The episode in which Alice meets the Red King
occurs in Chapter 4 of Through the Looking
Glass. The King is asleep, Tweedledee tells Alice
that the King is dreaming about her, and that she
has no existence except as a “sort of thing” in the
King’s dream.

“If that there King was to wake,” adds
Tweedledum, “you’d go out—bang!-—just like a
candle!”

But this dialogue occurs in Alice’s own dream. s
the King a “thing” in her dream, or is she a “thing”
in his? Which is real, and which is the dream?

The double dreams lead into deep philosophical
questions about reality. “If it were not put
humorously,” Bertrand Russell once said, “we
should find it too painful.”

The chickens and eggs go back in time, with
endless chickens and eggs, but with Alice and the
Red King the regress is circular. Drawing Hands,
by Maurits Escher, illustrates this circular paradox.

Douglas Hofstadter, in his book Gédel, Escher,
Bach: An Eternal Golden Braid, calls these circular
paradoxes “strange loops.” His book is filled with
striking examples of strange loops in science,
mathematics, art, literature, and philosophy.




Crocodile and Baby
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Greek philosophers liked to
tell about a crocodile that
snatched a baby from its
mother.

Crocodile: Will | eat your
baby? Answer correctly and
I'll give the baby back to
you unharmed.

Mother: Oh! Oh! You're
going to eat my baby.

Crocodile: Hmmm. What
shall | do? If I give you back
your baby, you will have
spoken falsely. I should
have eaten it. . . . Okay, so |

1 won't give it back.

Mother: But you must. If
you eat my baby, I spoke
correctly and you have to
give it back.

™\ The poor crocodile was so

freaked that it let the baby
go. The mother grabbed
her child and ran.
Crocodile: Zounds! If
only she’d said I'd give the
baby back. I'd have had a
juicy meal.

The crocodile has a problem. He has to both eat
the baby and give it back, at the same time.

The mother is very clever. Suppose, instead,
she had said: “You're going to give the baby
back.” Then, the crocodile could return the baby
or eat it, in both cases without contradiction. If he
gives it back, the mother spoke truly, and the
crocodile has kept his word. On the other hand, if
he is mean enough, he can eat the baby. This
makes the mother’s statement false, which frees
the crocodile from the obligation to give the baby
back.



The Don Quixote Paradox

r ™ The novel Don Quixote tells
of an island with a curious
law. A guard questions
every visitor:

Guard: Why are you com-
ing here?

If the visitor answers truly,
all is well. If he answers
falsely he is hanged.

s ™ One day a visitor answered:
Visitor: | came here to be
hanged!

The guards were as puzzled
as the crocodile. If they do
not hang the man, he has
lied and has to hang. But if
they hang him, he spoke
truly and should not be

\. hanged.

To decide the matter, the
visitor was taken to the
island’s governor. After
thinking long and hard the
governor made his decision.
Governor: Whatever |
decide is sure to break the
law. So I will be merciful
and let the man go free.

The hanging paradox is in Chapter 51 of the
second book of Don Quixote. Sancho Panza, the
Don’s servant, has become governor of an island
where he has sworn to uphold the country’s
curious law about visitors. When the visitor is
brought before him, he decides the man’s case
with mercy and common sense.

The paradox, although similar to the crocodile
paradox, is clouded by the ambiguity of the
visitor’s statement. Is it the man'’s statement about
his intent, or is it a statement about a future event?
In the first sense, the man may have spoken truly
about his intent, and the authorities could then
not hang him and there would be no
contradiction. But if his statement is taken in the
second sense, then whatever the authorities do
will contradict the law.

15



The Barber Paradox

16

Y.op The famous barber paradox
| was proposed by Bertrand
| Russell. If a barber has the
| sign at the left in his win-
4 H dow, who shaves the bar-
| ber?

If he shaves himself, then
he belongs to the set of
men who shave themselves.
But his sign says he never
shaves anyone in this set.
Therefore he cannot shave

| himself.

If someone else shaves the
barber, then he’s a man
who doesn’t shave himself.
But his sign says that he
does shave all such men.
Therefore no one else can
shave the barber. It seems
as if nobody can shave the
barber!

Bertrand Russell proposed the barber paradox to
dramatize a famous paradox he had discovered
about sets. Some constructions seem to lead to
sets that should be members of themselves. For
example, the set of all things that are not apples
could not be an apple, so it must be a member of
itself. Consider now the set of all sets that are not
members of themselves. [s it a member of itself?
However you answer, you are sure to contradict
yourself,

One of the most dramatic turning points in the
history of logic involves this paradox. Gottlob
Frege, an eminent German logician, had
completed the second volume of his continuing
life’s work, The Fundamentals of Arithmetic, in
which he had thought he had developed a
consistent theory of sets that would serve as the
foundation of all mathematics. The volume was at
the printer's when Frege received a letter from
Russell, in 1902, telling him about the paradox.
Frege’s set theory permitted the formation of the
set of all sets not members of themselves. As
Russell’s letter made clear, this apparently well-
formed set is self-contradictory. Frege had time
only to insert a brief appendix that begins: “A
scientist can hardly encounter anything more
undesirable than to have the foundation collapse
just as the work is finished. | was put in this
position by a letter from Mr. Bertrand Russell. . . .”

It has been said that Frege’s use of the word
“undesirable” is the greatest understatement in the
history of mathematics.

We will explore a few more paradoxes of this
type and mention various approaches to
eliminating them. One way out of this dilemma is
to decide that the description “the set of all sets
that do not contain themselves” does not name a
set. A more sweeping and radical solution would
be to insist that set theory allow no sets that are
members of themselves.



Astrologer, Robot, and Catalog

™\ How about the astrologer
who gives advice to all
astrologers, and only those,
who do not advise them-
selves? Who advises the
astrologer?

Y Or the robot who repairs all
robots who do not repair
themselves? Who repairs

the robot?
y,

4 ™ Or a catalog that lists all cat-
alogs that do not list them-
selves? What catalog lists
this catalog?

\. J/

These are all variations of Russell’s paradox. In
each case the proposed definition for a set, S, is
that it contain all those objects and only those
objects that do not stand in a certain relation, R,
to themselves. If one asks whether or not S
belongs to itself, the paradox becomes apparent.
Here are three classical variations on this theme.

1. Grelling’s paradox is named for its
discoverer, the German mathematician Kurt
Grelling. We divide all adjectives into two sets:
self-descriptive and non-self-descriptive. Words
such as English, short, and polysyliabic are self-
descriptive. Words such as German, monosyliabic,
and long are non-self-descriptive. Now we ask: To
which class belongs the adjective non-self-
descriptive?

2. Benry’s paradox gets its name from G. G.
Berry, an Oxford University librarian who
communicated it to Russell. It concerns “the
smallest integer that cannot be expressed in less
than thirteen words.” Since this expression has 12
words, to which set does the integer it describes
belong: the set of integers that can be expressed in
English with less than 13 words, or the set of
integers that can be expressed only with 13 words
or more? Either answer leads to a contradiction.

3. The philosopher Max Black expressed the
Berry paradox in a fashion similar to the following
version: Various integers are mentioned in this
book. Fix your attention on the smallest integer
that is not referred to in any way in the book. Is
there such an integer?
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Dull Versus Interesting

—\ But this makes him or her
very interesting. So we
have to move the dullest
person to the other list.
Dullard: Thanks.

Now someone else will be
the dullest person, and he
or she too will be interest-
“~_ | ing. So eventually everyone
becomes interesting. Or do
they?

Some people are interest-
ing. Some are dull.

\/

Football Player: I'm an
all-American football star.

Musician: [ can play a
guitar with my toes.

Dullard: I can’t do any-
thing.

Here we have a list of all

- the dull people and a list of
_Oull__ nleresting all the interesting people.

[ Good WalferCrankite | | Somewhere on the dull list

Miss Thud Indira Gandhi is the dullest person in the

Ms. Humdrum Henry ford T world.
efe. elc.
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This amusing paradox is a variation of the “proof”
that every positive integer is interesting. The
inventor, Edwin F. Bechenbach, published it as a
note entitled “Interesting Integers,” in American
Mathematical Monthly {vol. 52, p. 211, April
1945).

Is the proof valid or fallacious? Does moving the
second dull person to the interesting list cause the
first person moved to become dull again, or does
he remain interesting? s there a sense in which
every person is interesting because he is the
dullest person of specified sets, just as every
integer is the lowest integer of specified sets? If all
persons (or integers) are interesting, does this
make the adjective “interesting” meaningless?
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Semantics and Set Theory

Paradoxes about truth
values are called semantic
paradoxes, and those about

liars sets of things, set theory
O~ paradoxes. The two types
’ are closely related.
s
L
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The correspondence between semantic (truth-
value) paradoxes and set theory or class
paradoxes springs from the fact that every truth-
value statement can be rephrased as a statement
about sets, and vice versa. For example, “All
apples are red” means that the set of all apples is
a subset of the set of all red things. This can be
rephrased in truth-value language as the semantic
statement: “If it is true that x is an apple, then it is
true that x is red.”

Consider the liar-paradox assertion: “This
statement is false.” It can be translated into the
following set statement: “This assertion is a
member of the set of all false assertions.” If the
statement actually does belong to the set of all
false assertions, then what it asserts is true and
therefore it cannot belong to the set of false
statements. And if the statement does not belong
to the set of all false assertions, then what it
asserts is false, and therefore it must belong to the
set of all false statements. Every semantic paradox
has its analog in set theory, and every set theory
paradox has its sermantic analog.



Metalanguages

A: statemen! Bssfalse.
B Ap/:és are blue.

Semantic paradoxes are
resolved by introducing the
device of metalanguages.
Statements about the world,
such as “apples are red” or
“apples are blue,” are made
in an object language.
Statements about truth
values must be made in a
metalanguage.

In this example, there can
be no paradox because
sentence A, assumed to be
written in metalanguage,
talks about the truth value
of sentence B, which is
written in object language.

How can we talk about the
truth values of a metalan-
guage? We mustgo to a
higher metalanguage. Each
rung of this infinite ladder is
a metalanguage to the rung
below, and an object lan-
guage to the rung above.

The concept of metalanguages was developed by
the Polish mathematician Alfred Tarski. At the
bottom rung of the ladder are statements about
objects, such as “Mars has two moons.” Words
like true and false cannot occur in this language.
To speak about the truth or falsity of sentences in
this language we must employ a metalanguage,
the next higher rung of the ladder. The
metalanguage includes all of the object language,
but it is a “richer” language because it can talk
about the truth values of the object language. To
use Tarski’s favorite example: “Snow is white” is a
statement in an object language. But “The
statement ‘Snow is white’ is true” is a statement in
a metalanguage.

Can we speak of the truth and falsity of
metalanguage statements? Yes, but only by going
up to the third rung of the ladder and speaking in
a still higher metalanguage that refers to all the
languages below it.

Every rung of the ladder is an object language
to the rung immediately above it. Every rung,
except the bottom one, is a metalanguage to the
rung immediately below. The ladder extends
upward as far as we like.

Examples of sentences on the first four rungs of
the ladder are:

A. The sum of the interior angles of any
triangle is 180 degrees.

B. Sentence A is true.

C. Sentence B is true.

D. Sentence C is true,

Language at level A simply states theorems
about geometrical objects. A geometry text
containing proofs of the theorems is written in a
metalanguage at level B. Books about proof
theory are written in a metalanguage at level C.
Fortunately, mathematicians seldom need to go
beyond C.
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The theoretical infinity of the ladder is
amusingly discussed by Lewis Carroll in an article,
“What the Tortoise Said to Achilles.” A reprint of
the article appears in The Magic of Lewis Carroll,
by John Fisher, and in Gédel, Escher, Bach, by
Douglas Hofstadter.
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Theory of Types

4 e —\ Set paradoxes are banished
by a similar infinite hier-
K947\ archy. A set cannot be a
: member of itself, or of any
N set of a lower type. The

YN barber, astrologer, robot,

; and catalog simply don't
exist.

The analog in set theory to Tarski’s ladder of
metalanguages is what Bertrand Russell originally
called his “theory of types.” Leaving technicalities
aside, the theory arranges sets in a hierarchy of
types in such a way that it is not permissible to say
that a set is a member of itself, or not a member
of itself. This eliminates self-contradictory sets.
These potentially contradictory sets are simply
ruled out of the system. There is no meaningful
way to define them if you obey the rules of the
theory of types. This corresponds to the semantic
assertion that a sentence such as the liar paradox
is simply “not a sentence” because it violates the
formation rules of legitimate sentences.

Bertrand Russell spent many years working on
his theory of types. In his book My Philosophical
Development, Russell writes:

When The Principles of Mathematics was
finished, [ settled down to a resolute attempt to
find a solution of the paradoxes. [ felt this as
almost a personal challenge and [ would, if
necessary, have spent the whole rest of my life on
an attempt to meet it, But for two reasons I found
this exceedingly disagreeable. In the first place,
the whole problem struck me as trivial. . . . In the
second place, try as | would, | could make no
progress. Throughout 1903 and 1904, my work
was almost wholly devoted to this matter, but
without any vestige of success.
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The Swami’s Prediction

‘“\\ -
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Can a swami see the future
in his crystal ball? Predic-
tions of the future can lead
to a strange new kind of
logic paradox,

One day the Swami had an
argument with his teenage
daughter Sue.

Sue: You're a big put-on,
Dad. You can't really tell the
future.

Swami: | most certainly
can,

Sue: No you can'’t. And |
can prove it!

Sue wrote on a piece of
paper, folded it, and stuck it
under the crystal ball.

Sue: I've described an
event that will either hap-
pen or not happen before 3
o'clock. If you can predict
which it will be, you won't
have to buy the car you
promised me for gradua-
tion.

Sue: Here's a blank card.
If you think the event will
happen, write YES on it. If
you think it won’t, write NO.
And if you're wrong, will
you agree to buy me the
car now instead of later?
Swami: Okay, Sue, it's a
deal.

The swami wrote on the
card. At 3 o’clock Sue took
the paper from under the
crystal ball and read it
aloud: “Before 3 PM. you
will write NO on the card.”

Swami: You've tricked
me, [ wrote YES, so | was
wrong. But if I'd written NO,
it would be wrong too.
There’s no way | could have
been right.

Sue: 1'd like a red sports
car, Dad, with bucket seats.



The original form of this paradox involves a
computer that can only respond “yes” or “no.”
The computer is asked to predict whether its next
response will be “no.” Clearly, it is logically
impossible for the prediction to be correct. The
paradox can be reduced to ultimate simplicity by
saying to someone: “Will the next word you speak
be ‘no’? Please answer ‘yes’ or ‘no’.”

Is this the same as the liar paradox? What is the
meaning of “no” when the person replies?
Clearly, it means “It is false that | am now saying
‘It is false’.” This in turn is the same as “This
sentence is false.” Thus the swami prediction
paradox is little more than a disguised version of
the liar paradox.

Note that just as “This sentence is true” does
not lead to paradox, neither does the question,
“Will the next word you speak be ‘yes’?” The
person can answer either “yes” or “no” without
contradiction. As in the crocodile version of the
liar paradox, this corresponds to the fact that the
crocodile can either eat or return the baby, without
contradiction, if the mother says: “You will return

my baby.”

25



The Unexpected Tiger

26

Princess: You're the king,
father, May | marry Michael?
King: My deat, you may if
Mike kills the tiger behind
one of these five doors,
Mike must open the doors
in order, starting at 1, He
won't know what room the
tiger’s in until he opens the
right door. It will be an
unexpected tiger.

When Mike saw the doors
he said to himself:

Mike: If ] open four empty
rooms |'ll know the tiger's in
room 5, But the king said |
wouldn’t know in advance.
So the tiger can’t be in
room 5.

Mike: Five is out, so the
tiger must be in one of the
other four rooms, What
happens after 1 open three
empty rooms? The tiger will
have to be in room 4, But
then it won’t be unex-
pected. So 4 is out too.

By the same reasoning,
Mike proved the tiger
couldn’t be in room 3, or 2,
or 1. Mike was overjoyed.
Mike: There’s no tiger
behind any door. If there
were, it wouldn't be unex-
pected, as the king prom-
ised. And the king always
keeps his word.

Having proved there was
no tiger, Mike boldly started
to open the doors. To his
surprise, the tiger leaped
from room 2. It was com-
pletely unexpected, The
king had kept his word. So
far logicians have been un-
able to agree on what

is wrong with Mike's
reasoning.



The paradox of the unexpected tiger has many
other story forms. Of unknown origin, it first
appeared in the early 1940s as a paradox about a
professor who announced that an “unexpected
examination” would be given on one day of the
following week. He assured his students that no
one could deduce the day of the examination until
the day it occurred. A student “proved” it couldn’t
be on the last day of the week, or the next-to-last,
or the day before that, and so on for all days of
the week. Nevertheless, the professor was able to
keep his word by giving the examination on, say,
the third day.

When the Harvard University philosopher W. V.
Quine wrote a paper about the paradox in 1953,
it took the form of a warden who scheduled an
unexpected hanging for a prisoner. For a
discussion of the paradox, and a bibliography of
23 references, see the first chapter of my book,
The Unexpected Hanging and Other Mathematical
Diversions.

Most people admit that the first step in Mike’s
reasoning is correct, namely that the tiger cannot
be in the last room. But once this is admitted as a

~sound deduction, the rest of Mike’s reasoning
seems to follow. For if the tiger cannot be in the
last room, then identical reasoning rules out the
next-to-last, and so on for the others.

However, even the first step of Mike’s reasoning
is faulty. Suppose he has opened all doors but the
last. Can he deduce correctly that there is no tiger
in the last room? No, because if he makes such a
deduction, he might open the door and find an
unexpected tiger! Indeed, the entire paradox holds
even if only one room is involved.

Suppose Mr. Smith, who you believe always
speaks truly, hands you a box and says, “Open it
and inside you will find an unexpected egg.” What
can you deduce about the presence or absence of
an egg in the box? If Smith is correct, the box
must contain an egg, but then you will expect the
egg and therefore Smith’s statement is false. On
the other hand, if this contradiction prompts you
to deduce that the box cannot contain an egg (in
which case Smith spoke falsely) and you open it to
find an unexpected egg, then Smith spoke truly.

The consensus among logicians is that although
the king knows he can keep his word, there is no
way that Mike can know it. Therefore, there is no
way he can make a valid deduction about the
absence of the tiger in any room, including the last
one.

27



Newcomb’s Paradox

28

One day Omega, a
superbeing from outer
space, landed on the earth.

Omega had advanced
equipment for studying
human brains. He could
predict with great accuracy
how any person would
choose between two alter-
natives.

Omega tested many people
by using two large boxes.
Box A was transparent and
always held $1000. Box B
was opaque. Either it was
empty or it held 1 million
dollars.

Omega told each subject:
Omega: You have two
choices. One is to take both
boxes and keep their con-
tents, But if | expected you
to do this, | have left B
empty. You get only $1000.

Omega: Your other choice
is to take only box B. If |
expected you to do this, |
have put a million dollars in
B. You get it all,

-~

This man has decided to
take only box B. He rea-
sons:

Man: I've watched Om
make hundreds of tests.
Every time he predicted
right. Each person who
took both boxes got only a
thousand. So I'll take only
box B and become a mil-
lionaire.

This woman has decided to
take both boxes. She rea-
sons:

Woman: Om has already
made his prediction and
left. Box B is not going to
change. If empty, it stays
empty. If full, it stays full,
So I'll take both boxes and
get everything that's here.

Who do you think made
the best decision? Both
arguments can’t be correct.
Which is wrong? Why is it
wrong? This is a new para-
dox, and experts do not yet
know how to solve it.



This is the latest and most bewildering of the
many prediction paradoxes philosophers are
currently debating. It was invented by a physicist,
William Newcomb, and is known as Newcomb'’s
paradox. A Harvard University philosopher,
Robert Nozick, was the first to publish and analyze
it. His analysis draws heavily on what
mathematicians call “game theory” and “decision
theory”

The man’s decision to take only box B is easy to
understand. To make the woman’s argument
clearer, recall that Omega has gone. Box B is
either full or empty, and it is not going to change.
If full, it remains full. If empty, it remains empty.
Let’s consider the two cases.

If B is full, and the woman takes only B, she
gets a million dollars. But if she takes both boxes
she gets a million plus a thousand.

If B is empty, and she takes only B, she gets
nothing. But if she takes both boxes, she gets at
least a thousand.

In each case, therefore, the woman is richer by
a thousand dollars if she takes both boxes.

The paradox is a sort of litmus paper test of
whether a person does or does not believe in free
will. Reactions to the paradox are almost equally
divided between believers in free will, who favor
taking both boxes, and believers in determinism
who favor taking only box B. Others argue that
conditions demanded by the paradox are
contradictory regardless of whether the future is or
is not completely determined.

For a discussion of these conflicting views, see
my Mathematical Games Department in Scientific
American, July 1973, and the guest column by
Professor Nozick in the same department, March
1974.
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The history of mathematics has been strongly
influenced by number paradoxes that have startled
and confounded mathematicians by violating our
intuition. Classic instances are the discoveries of:

1. Irrational numbers: /2, m, e, and an
uncountable infinity of others.

2. Imaginary numbers: \/— 1 and the complex
number system of which the imaginaries are part.
3. Numbers, such as quaternions, that violate
the commutative law of multiplication, a X b =

b X a

4. Numbers, such as Cayley numbers, that
violate the associative law of multiplication,
a X (bxc)={(axb)XxXec

5. Transfinite or infinite numbers, such as the
aleph numbers discovered by Georg Cantor,
which opened up what David Hilbert, the great
German mathematician, called a new “paradise”
for mathematicians.

The paradoxes in this chapter are about rational
numbers except for the last three, which contain

irrational numbers and transfinite numbers. They
have been selected not only to amuse you, but
also to invite you to explore on your own some of
the more significant regions of number theory into
which they lead. For example, “The Ubiquitous
Number 9” leads into finite arithmetics. “The
Curious Will” leads into Diophantine analysis.
Many of the paradoxes are jump-off points for
generalized algebraic solutions that will polish your
algebraic skills. The chapter closes with a
tantalizing glimpse into Cantor’s paradise, a field in
which much exciting research is now going on.
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The Six-Chair Mystery

~ c1ub Poradan ) Six students made reserva-
2 = tions at a popular disco-
theque. At the last minute,
a seventh student joins the
group.
.
e Hostess: Thank heavens,

those kids are finally here!
I’'ve been holding six seats
for them. Oh no! | see

| seven!

N\ Hostess: No problem,
Cees L though. I'll just seat the first
” student and let him hold his
girlfriend on his lap for a
few minutes.

Hostess: Now the third
student sits next to the first
two, and the fourth student
sits next to her. Then the
fifth one goes opposite the
boy with the girl on his lap,
and the sixth sits next to
him. That takes care of six
students, and there’s still a
vacant chair!

Hostess: So-—all | have
to do is tell the seventh stu-
dent to get off her boy-
friend’s lap, walk around
the table, and sit in the
vacant chair!

Isn’t that something? Seven
persons seated in six chairs,
one to a chair!
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You should have no difficulty spotting the fallacy
in this version of an old paradox about the
landlady who puts 21 guests in 20 rooms. The
paradox is resolved by realizing that the girl who
sits temporarily on the boy’s lap is, in fact, number
2. By the time the sixth student is seated, the
discotheque owner has forgotten the girl's number
and counts her as number 7. The actual seventh
student does not get to the table at all. Number 2
simply gets off the boy’s lap, moves around the
table, and sits in the sixth chair.

The paradox appears to violate the theorem
that a finite set of n elements can be put in one-to-
one correspondence only with other sets that also
have n elements. We return to this theorem when
we consider infinite sets in the “Hotel Infinity”
paradox. “The Six-Chair Mystery” is an amusing
way to illustrate the difference between finite and
infinite sets.



The Elusive Profit

Dennis sold one of his
paintings to George for
$100.

Dennis: You've got a bar-
gain, George. In ten years
that picture will be worth
ten times as much.

George hung the painting
in his home, but later he
decided he didn't like it. He
sold it back to Dennis for
$80.

A week later, Dennis sold
the picture to Gerry for
$90.

Dennis: You've got a
great bargain, Gerry. In ten
years that picture will be
worth fifty times what you
paid for it!

The artist was pleased.
Dennis: First | sold the
picture for $100. That just
covered my time and mate-
rials, so it was an even
trade. Then | bought it back
for $80 and sold it for $90,
so I'm $10 ahead.

George figures it differently.
George: By George, that
artist sold his picture for
$100 and bought it back for
$80. That’s a clear profit of
$20. We can forget the next
sale because $90 is about
what the picture is worth.

Genry accepts both argu-
ments.

Gerry: The artist made
$20 when he sold his pic-
ture for $100 and bought it
back for $80. Then he
made another $10 when he
paid $80 for it and sold it to
me for $90. So his total
profit is $30. What is the
real profit? $10? $20? $30?
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This confusing little puzzle always provokes lively
arguments. It may take some time to realize that
the difficulty with this problem is that it is not “well
defined,” and that one answer is as good {or bad)
as any of the other answers.

It is impossible to say what the artist’s “real
profit” is because the statement of the problem
does not establish the initial “cost” of the painting.
Put aside the cost of the artist’s time spent on
making the picture and say that Dennis paid a
total of $20 for all the materials used, such as the
frame, canvas, and paint. At the end of the three
sales, the artist has obtained $110. If we define
the final profit as the difference between the cost
of his materials and the amount of money he
ultimately received, then his profit is $90.

Since we do not know what the materials cost
(we only assigned a value), we have no way of
calculating the real profit. This problem seems to
be arithmetical, but actually it is a debate over
what is meant by real profit. This paradox is like
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the old question about whether a tree falling in a
forest makes a sound if there are no ears to hear
it. The answer can be yes or no depending on
what is meant by the word sound.

The first two paradoxes in Chapter 3,
Geometry, provide two other entertaining
examples of problems that are basically arguments
over what is being referred to by a word.



Population Implosion

We hear a lot these days
about how fast the earth’s
population is growing.

Mr. Ninny, president of the
League Against Birth Con-
trol, disagrees. He thinks
the world’s population is
decreasing, and soon every-
one will have more space
than he or she needs.
Here’s his argument,

Mr. Ninny: Every person
alive has two parents. Each
parent had two parents.
That makes four grandpar-
ents. And each grandparent
had two parents, so that
makes eight great-grandpar-
ents. The number of ances-
tors doubles for each gener-
ation you go back.

™ Mr. Ninny: [f you go back
20 generations to the Mid-
dle Ages, you would have
1,048,576 ancestors! And
this applies to every person
alive today. So the popula-
tion of the Middle Ages
must have been a million
times what it is now!

Mr. Ninny can’t be right,
but where’s the flaw in his
reasoning?

Ninny’s argument is correct if the following two
assumptions are made:

1. On the ancestral tree of every living person,
no ancestor appears more than once.

2. The same person never appears on more
than one tree.

Neither assumption can be correct in all cases. If
a couple has five children, and each of these
children has five children, the original couple will
be grandparents on 25 separate trees. Moreover,
on any one tree, if you go back many generations,
there will be an overlap of branches arising from
the marriage of distant relatives.

The fallacy of Ninny’s argument is that it does
not take into account either the duplications on
single trees or the enormous “intersection” of the
sets of people that make up each living person’s
tree. In Ninny’s implosion argument, millions of
people are counted millions of times!

Most people are surprised at how rapidly the
terms of a doubling series increase. If someone
agrees to give another person $1 today, $2
tomorrow, $4 the next day, and so on, it is hard to
believe that on the 20th day the donor will be
giving more than a million dollars!

Does a shortcut exist for obtaining the sum of
the first 20 terms in this doubling series? Yes;
double the last term, then subtract 1. The
twentieth term is 1,048,576. The sum of the first
20 terms is

(2 x 1,048,576) — 1 = 2,097,151

The trick applies to any partial sum of the terms in
this doubling series. There is a simple way of
showing this rule always works. Discovering that
simple way is a challenging puzzle you might wish

to try.
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The Ubiquitous Number 9

1232272

The number 9 has many
mysterious properties. Did
you know that 9 is hidden
inside the birthdate of every
famous person?

Take George Washington'’s
birthday. He was born Feb-
ruary 22, 1732. Write that
as the single number
2221732. Now rearrange

these digits to make any dif-

ferent number. Subtract the
smaller from the larger.

Add all the digits in the dif-
ference. In this case the
sum is 36. And 3 plus 6

is 9!

If you do this with John
Kennedy's birthdate {May
29, 1917), or Charles De
Gaulle’s (November 22,
1890), or that of any
famous man or woman,
you always get 9. Is there
some curious connection
between 9 and the birth-
dates of famous people?
Does this work with your
birthdate?

If all the digits of a number are added and then
the digits of this sum are added, and this
procedure is continued until only one digit
remains, this final digit is called the digital root of
the original number. The digital root is equal to
the remainder when the original number is
divided by 9, and for this reason the procedure is
often called “casting out nines.”

The fastest method of obtaining a digital root is
to cast out nines while adding the original
number’s digits. For example, if the first two digits
are 6 and 8, which add to 14, add 1 and 4 at
once, and remember only 5. In other words,
whenever a partial sum is more than one digit,
add the two digits and carry only the sum. The
final digit will be the digital root. The digital root is
said to be equivalent to the original number
modulo 9, usually abbreviated mod 9. Since 9
divided by 9 has a remainder of 0, in mod 9
arithmetic 9 and O are equivalent.



Before calculating machines existed,
accountants often used mod 9 arithmetic to check
the addition, subtraction, multiplication, and
division of large numbers. If, for instance, we take
A from B to get C, the work can be checked by
taking the digital root of A from the digital root of
B, and then seeing if the result matches the digital
root of C. If the original subtraction is correct,
there will be a match. This does not prove that the
original subtraction is correct, but if there is no
match, the accountant knows he or she has made
a mistake. If there is a match, the result is
probably correct. Similar digital-root checks apply
to addition, multiplication, and division.

Now we are in a position to understand why the
birthdate trick works. Suppose a number N is
composed of many digits. We may scramble the
digits to get a new number N’. Clearly, N and N’
have the same digital roots. Therefore, if we
subtract one digital root from the other, the
difference will be 0, which is the same as 9 (in
mod 9 arithmetic). This number, 0 or 9, must be
the digital root of the difference between N and
N'. In short, take any number whatever, scramble
its digits, subtract the smaller from the larger, and
the difference will have a digital root of O or 9.

Because of the way the digital root is calculated,
a final result of O can occur only if N and N’ are
identical numbers. Thus, when they try the
procedure on their birthdates, your friends should
be sure that scrambling produces a different
number. As long as the two numbers are not the
same, the difference will have a digital root of 9.

Many magic tricks are based on the ubiquitous
number 9. For example, ask someone to write
down the number of a dollar bill while your back
is turned so that you cannot see what the person
is writing. The person then scrambles the digits to
make a different number and takes the smaller
from the larger. Ask your friend to cross out any
single nonzero digit in the result, then read the
remaining digits aloud in any order. With your
back still tumed, you should have no trouble
naming the crossed-out digit!

The secret of this trick should be obvious. The
difference will have a digital root of 9. As your
friend calls out the digits, add them mentally,
casting out nines. When the person is finished,
subtract the final digit from 9, and the digit
crossed out is the result. (If the final digit is 9, then
the crossed-out number is 9.)

The birthdate and dollar bill tricks are excellent
infroductions to the study of modular arithmetic
systems.
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The Bewildered Bus Driver

Pgm: T T
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This bus is filled with 40
boys. Soon they will be on
their way to camp.

This bus is filled with 40
gitls. They are going to the
same camp.

Before starting, the bus
drivers have some coffee.

Meanwhile, ten boys get off
their bus and sneak into the
girls’ bus,

When the driver of the girls’
bus comes back, he notices
there are too many passen-

gers.
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Driver: All right, let’s cut
out the fun and games! This
bus seats 40 people, so 10
of you had better get off.
And make it fast!

Ten passengers of unknown
sex get off. They all board
the boys’ bus and take the
ten empty seats. Soon the
two buses, each with 40
campers, are on their way.

Later, the driver of the

girls’ bus thinks:

Driver; Hmm . .. I'm sure
there are some boys on this
bus, and some gitls on the
boys’ bus. | wonder which
bus has the most passen-
gers of the wrong sex?

It’s hard to believe, but
regardless of the sexes of
the 10 campers who go
back to the boys’ bus, the
buses will have exactly the
same proportion of the
opposite sex.

Why? Suppose 4 boys are
on the girls’ bus. This leaves
4 empty seats on the boys’
bus. These empty seats
have to be filled by four
girls. And the same argu-
ment applies to any other
number of boys.



This paradox can easily be demonstrated with a
deck of playing cards. First, the deck is divided
into 26 red and 26 black cards. Let someone cut a
packet of cards from one of the piles. Let us say
he takes 13 cards from the red pile. Placing them
on top of the black pile, he thoroughly shuffles the
pile. He is now instructed to remove the same
number of cards (in this case 13} from the pile just
shuffled (they can be taken randomly from
anywhere in the pile) and to place them on the
red pile. Finally, this restored half-deck is also
shuffled.

When the two half-decks are examined, you will
find that the number of red cards in the black
packet exactly matches the number of black cards
in the red packet. The proof of this stunt is
identical to that for the numbers of boys and girls
on the two buses.

Many card tricks are based on this principle.
Here is another one in which the principle is nicely
concealed. Divide the deck exactly in half, turn
one half face up, and shuffle the two halves
together. Show this mixed-up deck to your
audience without saying that exactly 26 cards have
been turned face up. Allow someone to shuffle the
deck thoroughly. Hold out your hand and ask him
to deal 26 cards on your palm.

“Wouldn’t it be an astonishing coincidence,”
you say, “if my half contains precisely the same
number of face-up cards as your half?”

Ask him to spread his half on the desk top. As
he does so, secretly tum over your half before you
spread it on the desk beside his half. Count the
number of face-up cards in each half. The two
numbers will be the same!

The trick is based on the same principle
involved in the bus paradox. lf you had not turned
over your half, the number of face-up cards in the
other half would exactly match the face-down
cards in your half. When you turn over your half,

your face-down cards become face-up, and this
puts them in one-to-one correspondence with the
face-up cards in the other half.

At this point, we may consider the following old
brainteaser. A glass of water stands next to a glass
of wine. The two quantities of liquid are equal. A
drop of wine is transferred to the glass of water.
The water is thoroughly stirred, then a single drop
(the same size as the previous one) is taken from
the mixture and put back in the glass of wine. Is
there now more or less wine in the water than
there is water in the wine?

The quantities of the two mixtures will be the
same. The answer does not change even if the
glasses hold different quantities of liquid, or
whether the mixture is thoroughly stirred.
Moreover, we may transfer drops of different sizes
back and forth as often as we like. The only
condition that must be met is that, at the finish,
each glass must hold the same amount of liquid as
it held at the beginning. The wine glass, for
instance, will then be missing a certain amount of
wine. The place of this missing wine will be filled
by exactly the same amount of water! The proof
of equality for this brainteaser is the same as
the proof for the number of boys and gitls on the
two buses or the number of red and black cards in
the two half decks.

The wine and water problem is a marvelous
example of a problem that can be solved by a
tedious algebraic proof, but which vields readily to
a simple logical proof if one only has the right
insight.
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The Missing Dollar
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A record store put 30 old
rock records on sale at two
for a dollar, and another 30
on sale at three for a dollar.
All 60 were gone by the
end of the day.

The 30 two-for-a-dollar
disks brought in $15. The
30 three-for-a-dollar disks
brought in $10.
Altogether—$25.

The next day the store
manager put another 60
records on the counter.
Clerk: Why bother to sort
them? If 30 sell at two for a
dollar, and 30 at three for a
dollar, why not put all 60 in
one pile and sell that at five
for $2? It’s the same thing.

When the store closed, all
60 records had been sold at
five for $2. But when the
manager checked the cash,
he was surprised to find
that proceeds from the sale
were only $24, not $25.

What do you think hap-
pened to that missing dol-
lar? Did the clerk steal it?
Did a customer get the
wrong change?



Let’s figure out just what is going on here. As the
story shows, the clerk is mistaken in his hunch that
selling two sets of records at five for $2 is “the
same thing” as selling them in separate stacks at
two for a dollar and three for a dollar. There is no
reason why the money taken in should be the
same in both these cases. In this case the
difference is so small—only a dollar—that it seems
as if a dollar may have been overlooked or even
lost.

Consider the same problem but with slightly
different parameters. Suppose the more expensive
set of records sell at three for $2, or a price of 2/3
dollar per record. The less expensive records are
two for $1, or 1/2 dollar per record. The manager
combines the two stacks and sells them at five for
$3. If there are 30 records in each set, as before,
selling the sets separately brings in $35, but selling
all 60 at the combined price brings in $36. Now
the store has made an extra dollar rather than
lost one!

There is nothing wrong in trying out the clerk’s
hunch, but the numbers show he was wrong. The
error can be analyzed algebraically, but a more
extreme example is sufficient to show that you
cannot average prices and numbers of units per
transaction, in the manner described, and get
equivalent results,

Consider a car dealer who has six Rolls Royces
and six Volkswagens. He puts them on sale at two
Rolls for $100,000 and six Volks for $50,000. If
he sells all twelve cars he gets $350,000. The
average number of cars per single sale of each
type is four. The average of the two transaction
prices is $75,000. Now if he were to put his entire
stock on sale at four cars for $75,000, and sold all
the cars, he would get only $225,000. Moreover,
a customer would surely buy four Rolls for
$75,000, leaving the dealer with a stock of eight
overpriced cars. So much for the clerk’s reasoning
in the original problem!



Magic Matrix

Copy this 4-by-4 matrix on
a sheet of paper and num-
ber the cells from 1 to 16.
I'm going to astound you
with a remarkable demon-
stration of psychic power!
I'm going to control your
selection of four numbers
on this matrix.

Draw a circle around any
number you like. This pic-
ture shows a circled 7, but
you may pick any number
you please. Now draw a
vertical line through the
column that contains your
number. Then draw a hori-
zontal line through the row
that contains your number.

Circle any number not
already crossed out. Again,
draw lines through the
number’s column and row,
Choose a third number in
the same way, and cross
out its row and column.
Finally, circle the single
number that remains.

If you followed directions,
your square will look some-
thing like this. Now, add the
four numbers you selected,

Are you ready? I'm going to
tell each of you what your
totalis. It . . . is. .. 34!
Right? How do I know?
Was I really able to influ-
ence your selection?



Why does the matrix force us always to choose
four numbers that add up to 34? The secret

is ingenious and simple. At the top of each
column of a 4-by-4 matrix, place the numbers
1, 2, 3, 4. At the left of each row put the
numbers 0, 4, 8, 12.

1 2 3 4

0
4
8
12

These eight numbers are called the generators of
the magic matrix. Each cell is now given a number
that is the sum of its two generators, the generator
beside its row and the generator above its column.
When we have filled in all the cells, we will have a
matrix bearing the numbers 1 to 16 in counting
order.

1 2 3 4
O0(112¢( 3| 4
4|1 5] 6| 7|8
81 9110 |11 |12

12 113 |14 |15 |16

Now let us see what happens when four
numbers are circled in accordance with the
procedure described. The procedure guarantees
that no two circled numbers will be in the same
row or column. Each number is the sum of a
unique pair of generators, therefore the sum of the
four circled numbers will equal the sum of the
eight generators. Since the eight generators add to
34, the four circled numbers must also add to 34.

When you understand how the matrix works,
you should be able to make a magic matrix of any
size. Consider, for example, the order-6 matrix
below, with its 12 generators. Notice that in this
case the generators were chosen so that the

numbers in the cells appear to be random. This
conceals the underlying structure of the matrix,
and thus makes it seem more mysterious.

4 1 520 3
1{5](2 31|14
519161107158
26|13 7(412]5
4|85 9,614 |7
Of4)1|5]2]0]3
31714| 85316

The generators sum to 30. If 6 numbers are
chosen in accordance with the procedure, they
will sum to 30. The forced number {or sum) can,
of course, be any number we wish.

You can construct a 10-by-10 matrix that will
force the number (or sum) 100, or any other
interesting number such as the current year or a
person’s year of birth. Can magic matrices be
constructed with negative numbers in some cells?
Of course! In fact, a generator may be any
number, positive or negative, rational or irrational.

Can a magic matrix be constructed in which the
selected numbers are multiplied rather than added
to get the final number? Yes; this suggests another
path to explore. The basic construction is exactly
the same. The forced number, in this case,
becomes the product of the set of generators. You
might also wish to investigate what happens if
complex numbers are used in the cells. For more
material on magic matrices, consult the second
chapter of my Scientific American Book of
Mathematical Puzzles and Diversions.
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The Curious Will
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A wealthy lawyer owned 11
antique cars, each worth
about $25,000.

When the lawyer died, he
left a curious will. It asked
that his 11 cars be divided
among his three sons. Half
of the cars were to go to the
eldest son, a fourth to the
middle son, and a sixth to
the youngest.

Everybody was puzzled.
How can 11 cars be divided
into two equal parts? or
four? or six?

While the sons were argu-
ing about what to do, Ms.
Zero, the famous numerolo-
gist, drove up in her new
sports car.

Ms. Zero: Hello, boys.
You look as if you have a
problem. Can | help?

After the sons explained the
situation, Ms. Zero parked
her sports car next to the
11 antique cars and
hopped out.

Ms. Zero: Tell me, boys,
how many cars are here?
The boys counted 12,

Then Ms, Zero carried out
the terms of the will. She
gave half of the cars, or six,
to the oldest son. The mid-
dle son got a fourth of 12,
or three. The youngest son
got a sixth of 12, or two.
Ms. Zero: 6 plus 3 plus 2
is just 11, So, one car is left
over. And that's my car.

Ms. Zero hopped into her
sports car and drove off.
Ms. Zero: Always glad to
be of help, boys! I'll send
you my bill!



This is a modern version of an old Arabian
paradox involving horses rather than cars. You can
vary the terms of the will by changing the number
of cars and dividing them up by a different set of
fractions, subject to the condition that the
borrowing of one car permits carrying out the
terms of the will with one car left over to be
retuined to the lender.

For example, there could be 17 cars and a will
that says these cars are to be divided into halves,
thirds, and ninths. If there are n cars, and the
three fractions are 1/a, 1/b, and 1/c, the paradox
holds only if the equation

n _1,.1.1
n+1_a+b+c

has a solution in positive integers. See if you can
elaborate on the problem by increasing the
number of heirs, as well as increasing the number
of cars to be borrowed in order to carry out the
will.

The resolution of the paradox lies, of course, in
the fact that the fractions decreed by the original
will have a sum that is less than 1. If the will were
carried out by actually cutting up the cars, 11/12
of a car would be left over. Ms. Zero provides a
way of distributing that 11/12 to the sons. Thus,
the oldest gets 6/12 of a car more than he would
have gotten before, the middle son gets 3/12
more, and the youngest son gets 2/12 more.
These three fractions add to 11/12, and since
each son now gets an integral number of cars, no
cutting is necessary.
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The Amazing Code
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Dr. Zeta is a scientist from
Helix, a galaxy in another
space-time dimension. One
day Dr. Zeta visited the
earth to gather information
about humans. His host
was an American scientist
named Herman.

Herman: Why don’t you
take back a set of the Ency-
clopedia Britannica? It's a
great summary of all our
knowledge.

Dr. Zeta: Splendid idea,
Herman. Unfortunately, 1
can’t carry anything with
that much mass.

Dr. Zeta: However, | can
encode the entire encyclo-
pedia on this metal rod.
One mark on the rod will
do the trick.

Herman: Are you joking?
How can one little mark
carry so much information?

Dr. Zeta: Elementary, my
dear Herman. There are
less than a thousand differ-
ent letters and symbols in
your encyclopedia. 1 will
assign a number from 1
through 999 to each letter
or symbol, adding zeros on
the left if needed so that
each number used will have
three digits.

Herman: | don't under-
stand. How would you
code the word cat?

Dr. Zeta: It's simple. We
use the sort of code 1just
showed you. Cat might be
coded 003001020.

= .501503027030I1301601705...

J

(U\ﬂ

Using his powerful pocket
computer, Dr. Zeta scanned
the encyclopedia quickly,
translating its entire content
into one gigantic number.
By putting a decimal point
in front of the number, he
made it a decimal fraction.

Dr. Zeta then placed a mark
on his rod, dividing it accu-
rately into lengths a and b
so that the fraction a/b was
equivalent to the decimal
fraction of his code.

Dr. Zeta: When | get back
to my planet, one of our
computers will measure a
and b exactly, then com-
pute the fraction a/b. This
decimal fraction will be
decoded, and the computer
will print your encyclopedia
for us!



If you are not already familiar with ciphers, you
may enjoy coding and decoding some simple
messages in a number code similar to the one
used here. Codes illustrate the importance of one-
to-one correspondence, and the mapping of one
structure onto an isomorphic structure. Such
codes are actually used in advanced proof theory.
There is a famous proof by Kurt Gédel that every
deductive system complicated enough to contain
the integers has theorems that cannot be proved
true or false within the system. Gédel’s proof is
based on a number code that translates every
theorem of a deductive system into a unique and
very large integer.

Coding an entire encyclopedia by placing one
mark on a rod works only in theory, not in
practice. The difficulty is that the precision needed
for marking such a rod is impossible to achieve.
The mark would have to be enormously smaller
than an electron, and the measurements of the
two lengths would have to be precise on the same
scale. If we assume that two lengths can be
measured accurately enough to yield Dr. Zeta’s
fraction, then of course his procedure would work.

Switching to irrational numbers, mathematicians
believe that the decimal expansion of = (pi) is as
“unpatterned” as any typical infinite sequence of
random digits. If this is true, it means that
somewhere in the expansion, any finite sequence
of digits is certain to appear. In other words, at
some spot in the decimal expansion of 7 is a
sequence that codes the Encyclopedia Britannica
as Dr. Zeta did or, indeed, a sequence that codes
any other work that has been printed or that could
be printed!

There also are strongly patterned irrational
numbers that contain every finite sequence of
digits. An example is the number
123456789101112131415. . ., formed by
writing the counting numbers in counting order.



Hotel Infinity
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Before Dr. Zeta left, he told
a fantastic story.

Dr. Zeta; Hotel Infinity is
an enormous hotel at the
center of our galaxy. It has
an infinite number of rooms
that extend through a black
hole into a higher dimen-
sion. The room numbers
start at 1 and go on forever.

Dr. Zeta: One day, when
every room was occupied, a
UFO pilot, on his way to
another galaxy, arrived.

Dr. Zeta: Even though
there was no vacancy, the
hotel manager found a
room for the pilot. He just
moved the occupants of
each room to the room with
a number that was one
higher. This left Room 1
vacant for the pilot.

Dr., Zeta: The next day,
five couples on their honey-
moons showed up. Could
Hotel Infinity take care of
them? Yes, the manager
simply moved everybody to
a room with a number that
was five higher. This left
rooms 1 through 5 vacant
for the five couples.

Dr. Zeta: On the weekend
an infinite number of bub-
ble gum salespeople came
to the hotel for a conven-
tion.

Herman: [ can understand
how Hotel Infinity could
take care of any finite num-
ber of new arrivals. But
how could it find room for
an infinife number?

]

Dr. Zeta: Easily, my dear
Herman. The manager just
moved everyone to a room
with a number twice as
large as before.

Herman: Of course! That
put everybody in a room
with an even number. This
left all the odd-number
rooms—an infinity of
them-—vacant for the bub-
ble gummers!



No finite set can be put into one-to-one
correspondence with one of its proper subsets.
This is not true of infinite sets. They seem to
violate the old rule that a whole is greater than
any of its proper parts. Indeed, an infinite set can
be defined as one that can be put in one-to-one
correspondence with a proper subset of itself.

The manager of Hotel Infinity first showed how
the set of all counting numbers can be put in one-
to-one correspondence with one of its proper
subsets so as to leave one element left over, or five
elements left over, Clearly, this procedure can be
varied so that an infinite subset can be taken from
the entire set, leaving any desired finite number of
elements.

Another way to dramatize this kind of
subtraction is to imagine two infinitely long
measuring rods lying side by side on a desk, their
zero ends flush and at the center of the desk. Both
rods are marked and numbered in centimeters.
They extend infinitely far to the right, with all
numbers in one-to-one correspondence: 0-0,
1-1, 2-2, and so on. Now imagine sliding one rod
n centimeters to the right. After this operation all
marks on the rod that was moved will still be in
one-to-one correspondence with marks on the
stationary rod. If the rod were moved 3
centimeters, the marks will correspond as 03,
1-4, 2-5, . . . . The n centimeters that project
represent a difference in lengths between the two
rods. Both rods remain, however, infinitely long.
Since we can make n, the difference, any value
we please, it is clear that subtracting from infinity is
an ambiguous operation.

The hotel manager’s final maneuver opened up
an infinite number of rooms. This shows how
infinity can be taken from infinity yet leave infinity.
By putting every counting number in one-to-one
correspondence with every even counting
number, an infinite set of whole numbers—
namely all the odd ones—is left over.
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The Ladder of Alephs

52

Hotel Infinity is only one of
many paradoxes about infi-
nite numbers. There are
many infinities! The number
of counting numbers is only
the lowest infinity in an
endless hierarchy. The sec-
ond infinite number is the
number of points in the
entire universe, and the
third infinite number is very
much larger than that!

The German mathematician
Georg Cantor, who discov-
ered this ladder of infinities,
called his strange new num-
bers aleph-null, aleph-one,
aleph-two, and so on.

The cardinal number of a set is the number of the
elements in the set. For example, the cardinal
number of the set containing the letters of the
word cat is 3. Any finite set has a finite cardinal
number. Georg Cantor discovered that some
infinite sets were “larger” than other infinite sets.
He used the first letter in the Hebrew alphabet,
aleph (R), to denote the cardinal number of an
infinite set. Subscripts specify which “infinity.”

The cardinal number of the set of counting
numbers Cantor called X, (aleph-null). The set of
even numbers and the set of odd integers both
have cardinal number R, Thus R, + Ry = Ko.
The Hotel Infinity paradox showed that in some
sense we can have 8, — R, = R,! What crazy
numbers!



The set of real numbers forms a larger infinite
set, which Cantor believed to have cardinal
number R, {(aleph-one), the first transfinite cardinal
number greater than N,. His famous “diagonal
proof” showed that the set of real numbers cannot
be put in one-to-one correspondence with the set
of integers. He also showed that the set of real
numbers corresponds to the number of points on
a line segment, on an infinite line, on a square, on
an infinite plane, in a cube, in an infinite space,
and so on for hypercubes and higher spaces.

When 2 is raised to the power of an aleph,
Cantor proved that it generates a higher aleph that
cannot be put in one-to-one correspondence with
the aleph in the exponent. Thus the ladder of
alephs continues upward forever.

The cardinality of the set of real numbers is
known as c, or the “power of the continuum.” Try
as he would, Cantor was unable to prove that c is
the same as aleph-one. Many decades later the
work of Kurt Gédel and of Paul Cohen
established that this question cannot be decided
by using the axioms of standard set theory. As a
result, set theory is now divided into Cantorian
and non-Cantorian branches. Cantorian set
theory assumes that ¢ = R,;. Non-Cantorian set
theory assumes an infinity of transfinite numbers
between K, and c.

The famous “continuum hypothesis,” as
Cantor’s conjecture came to be known, was
resolved by showing it to be undecidable. The
situation is similar to what happened after the
discovery that Euclid’s parallel postulate could not
be proved. The postulate could be replaced by
other possibilities, thus dividing geometry into
Euclidean and non-Euclidean geometries.



3 Geometry

8.

Paradoxes about plane, solid, and impossible shapes

© 1981 Scott Kim
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To most people the word geometry means
Euclidean plane geometry—the study of
properties of rigid plane figures. In this chapter we
take the word in the broader sense proposed
more than a century ago by Felix Klein. It is the
study of properties of figures, in a space of any
dimensions, that are invariant with respect to any
defined group of transformations.

Klein’s concept of geometry is one of the most
seminal and unifying concepts of modern
mathematics. In Euclidean plane and solid
geometry the transformations that are permitted
consist of translations (moving from one place to
another), mirror reflections, rotations, and
dilations {magnifying or diminishing). More
extreme transformations define affine geometry,
projective geometry, topology, and finally set
theory, in which a figure can be broken up into
points that may be rearranged.

According to Jean Piaget, the Swiss
psychologist, children actually leam to grasp
geometrical properties in reverse of the above
order! Very young children, for instance, find it
easier to distinguish between a pile of red marbles
and a pile of blue marbles (set theory), or between
a closed rubber band and one cut open
(topology), than to distinguish between a
pentagon and a hexagon (Euclidean geometry).

Topology is a strange branch of geometry that
studies properties invariant with respect to
continuous deformations. Think of an object as
made of rubber which can be twisted and
distorted any way you like provided you don’t
break off parts and stick them back again. One-
sidedness, for example, is a topological property
of a Moebius strip because, if you imagine it made
of rubber, no amount of twisting and stretching
can alter its one-sided property. Many paradoxes
in this chapter—braiding a bracelet, turning a
torus inside out, a fixed-point theorem, and
others—deal with topological properties.

The reflection transformation, in which an
asymmetric figure like the capital letter B is
changed to its mirror image, is emphasized in this
chapter not only because it underlies so many
fascinating paradoxes, but also because it is so
important in modern geometry and modern
science. Mirror symmetry plays a fundamental role
in chemistry, especially organic chemistry in which
almost all carbon molecules are asymmetric,
with left-handed and right-handed forms. It is
also of major importance in crystallography, in
biology and genetics, and in particle physics.

Although some of the paradoxes may seem at
first to be little more than recreational curiosities,
you will see that each can lead you smoothly into
significant areas of mathematics such as group
theory, logic, sequences, infinite series, and limits,
Too often students of geometry become so
concerned with ruler and compass constructions
and the step-by-step proving of theorems that
they miss the exciting relationships between
geometry and other branches of mathematics, and
the endless and beautiful applications of geometry
to astronomy, physics, and other sciences.
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Getting Around a Girl

Marvin: Oh Myrtle! Are
you hiding behind that tree?

As Marvin circled the tree,
Myrtle did the same thing.
By keeping her nose
against the tree as she
sidled around it, she kept
out of sight.

™\ After going once around
the tree, they were back

.\ where they started. Has the
boy gone around Myrtle?
Marvin: Of course! |
walked around the tree so |
must have gone around

~ e her.

Myrtle: Nonsense! Even if
\ / the tree weren’t there, he’d
never see my back, How
can you go around any-
thing without seeing all
sides?

This ancient paradox is usually given in the form
of a hunter and a squirrel. The squirrel is sitting on
a stump. As the hunter circles the stump, the
squirrel keeps turning so that the squirrel is always
facing the hunter. After the hunter has circled the
stump, has he gone around the squirrel?

The question cannot be answered, of course,
unless there is agreement on what is meant by the
word around. Many words that are part of
everyday speech do not have precise definitions.
William James, in his classic philosophic work,
Pragmatism, has an amusing discussion of the
hunter and squirrel paradox. He presents it as a
model of a disagreement that is purely semantic.
The difficulties vanish as soon as the disagreeing
parties realize they are only arguing over how to
define a word. If people were only more aware of
the importance of precise definitions of terms,
many bitter arguments would turn out to be
almost as trivial as this one.



The Great Moon Mystery

The moon always keeps the
same face turned toward
the earth, After it has made
one revolution around the
earth, has it rotated on its
own axis?

J
' Lf“:l’/’\;r(P 1 say yes. If you watched
7

e Father: As an astronomer,
‘ P
ks < from Mars, you'd see the
% 7 . .
. s s ) moon turn once on its axis
I each time it circled the
earth,
\. Y,

Daughter: How con it

(
i\\r > © ﬁg rotate, father? If it did, we'd
v , | see different sides, but all
° & yAg we ever see is the same old
Af % | side.
0 o @ Does the moon rotate? Did

; the boy go around the girl?
g Are these genuine para-

H doxes, or just arguments

\. ./ over the meaning of a
word?

Like the previous paradox, this one is another
example of a semantic argument. What exactly is
meant by the phrase rotated on its own axis?
Relative to an observer on the earth, the moon
does not seem to rotate. Relative to an observer
outside the earth-moon system, it does.

It is hard to believe, but intelligent persons have
taken this simple paradox with utmost seriousness.
Augustus De Morgan, in the first volume of his
Budget of Paradoxes, reviews several nineteenth
century pamphlets attacking the notion that the
moon rotates. Henry Perigal, a London amateur
astronomer, was indefatigable in his arguments.
According to an obituary, his “main astronomical
aim in life” was to convince others that the moon
does not rotate. Perigal wrote booklets, built
models, and even composed poems to prove his
point, “bearing with heroic cheerfulness the
continual disappointment of finding none of them
of any avail.”

A marvelous little paradox, closely related to the
moon question, can be discussed at this point.
Draw two touching circles of equal size to
represent two disks. One disk is to be rolled
around the other without slipping, keeping the
rims in contact. How many times will the rolling
disk have rotated after it has completed one
revolution around the fixed disk?

Most people will answer one. Let them try it
with two coins of the same size, and they may be
surprised to discover that the rolling coin actually
rotates twice!
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Or does it? As in the earth-moon paradox, it
depends on the frame of reference of the
observer. Relative to its initial point of contact with
the fixed coin, the revolving coin rotates once.
Relative to you, looking down on the coins, it
rotates twice. This, too, has been the topic of
furious controversy. When Scientific American
published the problem originally in 1867, it
produced a flood of letters from readers who took
sharply opposing sides.

Readers were quick to perceive the relation of
the coin paradox to the earth-moon paradox.
Those who argued that the rolling coin rotates
only once also argued that the moon does not
rotate at all. “If you swing a cat around your
head,” wrote one reader, “would his head, eyes
and vertebrae each revolve on its own axis. . . ?
Would he die at the ninth tum?”

The volume of mail swelled to such proportions
that in April 1868, the editors announced they
were dropping the topic but would continue it in a
new monthly magazine The Wheel devoted
entirely to the “great question.” At least one issue
of this magazine appeared, featuring pictures of
elaborate devices that readers had made and sent
to the editors to prove their case.
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The rotation of astronomical bodies sets up
inertial effects, which can be detected by such
devices as the Foucault pendulum. Such a
pendulum on the moon would show that the
moon does indeed rotate as it swings around the
earth. Does this change the argument to one
independent of the observer’s frame of reference?

Surprisingly, in light of general relativity it does
not. You can assume that the moon does not
rotate at all, but that the entire universe (regardless
of whether its space-time structure is independent
of the matter it contains) rotates around the moon.
This rotating universe creates gravity fields that
produce the same effects as the inertial fields
generated by a rotating moon in a fixed cosmos!
Of course, it is much more convenient to think of
the universe as the fixed frame. But strictly
speaking, the question of whether any object
“really” rotates or is fixed is, in relativity theory, a
meaningless question. Only the relative motion is
“real.”



Mirror Magic

Mirrors are puzzling. Timo-
thy and Rebecca are guests
at a party where everybody
wears a name tag.

Rebecca: What a strange
mirror, Tim! Look—it
reverses my name but
doesn’t change yours at all!

Isn’t it mysterious that mir-
rors seem to reverse only
left and right? Why doesn’t
a mirror also reverse up
and down?

Actually, a mirror reverses
only along lines perpendic-
ular to its surface. Because
these three balls are on a
line at right angles to the
glass, their order is reversed
in the reflection.

If you stand on a mirror
floor, your up—down coor-
dinate axis is perpendicular
to the glass. So your front
stays front, your left stays
left, and you are reversed
from top to bottom.

If you stand with your side
to a mirror, your left—right
axis is perpendicular to the
glass. Now, your head stays
up, your front stays front,

and you are reversed from

left to right.

When you face a mirror,
your head stays up, your
left stays left, and you are
reversed from front to back.
Because your image’s left
hand is opposite where it
would normally be if you
stepped behind the glass
and turned around, we say
that the mirror has reversed
left and right.

Why does this mirror
reverse only CARBON and
not DIOXIDE? It doesn’t! The
letters of DIOXIDE are
reversed too, but their sym-
metry makes them look the
same after they are
reversed.

Can you guess what hap-
pens when two mirrors are
placed at right angles? They
create an unreversed
image. Rebecca is seeing
herself the way others see
her!
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Because each letter of TIMOTHY has a vertical axis
of symmetry, the mirror image of the name
appears unchanged. In REBECCA only the A has a
vertical axis of symmetry. As a result, the A is
unchanged, but all the other letters are mirror-
reversed.

Why does a mirror reverse left and right, but
not up and down? Similar to the paradoxes about
the moon and the coins, this paradox also poses a
semantic question that cannot be answered
without agreement on the meanings of such words
as left, right, and reverse. For a more detailed
analysis of exactly what a mirror does, see the first
three chapters of my Ambidextrous Universe. This
book contains a great deal of material on mirror-
reflection symmetry and the role it plays in science
and everyday life.

Unlike the letters of TIMOTHY, those in DIOXIDE
all have a horizontal axis of symmetry.
Consequently, when a mirror is held above the
word, all its letters appear unaltered in the
reflection. In the word CARBON, C, B, and O
appear the same in the mirror because they, too,
have horizontal axes of symmetry. But A, R, and N,
lacking such axes, are turned upside-down and
are mirror-reversed.

What English words are unchanged by this kind
of mirror reflection? The first step is to examine all
capital letters and list those that have a horizontal
axis of symmetry. They are B, C, D, E, H, |, K, O, X.
With these letters we can form many words of four
or more letters: CHOICE, COOKBOOK, ECHO,

OBOE, ICEBOX, HIDE, DECIDED, CHOKED, and
hundreds of others.

You can see an unreversed image of your face
by holding two pocket mirrors at right angles and
looking into the corner (the angle of the abutted
mirrors must be adjusted until you see a single
image of your face.) If you wink your left eye,
your mirror image will not wink its right eye, as
expected, but will wink the eye on the other side.
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The two sides of your face have been switched
because each side is reflected twice, once by each
mirror.

Your face will probably look strange to you.
That’s because the face you see in ordinary
mirrors is always reversed. Although faces have a
vertical axis of symmetry, left and right sides are
seldom perfect mirror images of each other. When
you see your face unreflected, these slight
differences between left and right sides cause your
image to appear strangely different, even though
you cannot say exactly why. Yet this is the face by
which you are known to the world! What is more,
the mirror image of your face looks equally
strange to those who know you well,

A good way to check your understanding of
how the double mirror works is to ask yourself
what you will see if you turn the two mirrors so
that the touching edges are horizontal rather than
vertical. The double reflection will now turn your
face upside down! Is this inverted face a mirror-
reversed image? No, it is still unreversed. If you
wink your left eye, your upside-down image will
again wink the eye on the other side.

These mirror tricks are excellent introductions to
the study of symmetry and reflections in
transformation geometry. The paradoxes can all
be explained by applying elementary
transformation theory.



Cubes and Ladies

™ How many cubes do you
count here? Are there 67
Are there 7?

[ DAYTIME
NURSERY

f [MPRESSIONIST  GALLERY | ™ Is this a drawing of a young
G —— woman? Or do you see an
old hag?

< "y What do you observe here?
A small cube in the cormer
of a room? A small cube
stuck on the outside of a
large block? Or a large
block with a cubical hole in
one comer?

These optical illusions are all instances of a
fluctuating interpretation of what you see. In the
first illusion, your mind sees the flat pattern as a
perspective drawing of a set of cubes; however,
this drawing can be seen in two different ways.
Each interpretation is equally good, so the mind
switches back and forth between them.

The same description is true of the picture of
the young woman or the old lady. It is impossible
not to see one or the other, and the mind jumps
back and forth between the two interpretations.

In the third illusion, there are three
interpretations. For most people, seeing this
illusion as a block with a cubical hole is the most
difficult, because cubical holes in blocks are
seldom seen. But if you keep looking and try to
imagine the small cube as a hole instead of a
solid, you will eventually see the picture that way.
Learning to “see” this diagram in the three
possible ways is closely related to the ability to
interpret geometrical drawings. In geometry
“seeing” a diagram incorrectly can be a major
source of confusion.



Randi’s Remarkable Rugs

Mr. Randi, the world
famous magician, owns a
rug that is 13 decimeters by
13 decimeters. He wants to
change it to an 8-by-21 rug.
Mr. Randi took the rug to
Omar, a rug dealer.

Randi: Omar, my friend, [
want you to cut this rug into
four pieces, then sew them
together to make an 8-by-
21 rug.

Omar: I'm sorry, Mr.
Randi. You're a great magi-
cian but your arithmetic is
terrible: 13-by-13 is 169, 8-
by-21 is 168. It won’t work.

Randi: My dear Omar.
The great Randi is never
wrong. Kindly cut the rug
into four pieces like this.

Omar did as he was told.
Then Mr. Randi arranged
the pieces, and Omar
sewed them together to
make an 8-by-21 rug.
Omar: | can't believe it!
The area has shrunk from
169 to 168! What hap-
pened to that missing

. J square decimeter?

This classic paradox is so startling and hard to
explain that it is worth taking time to draw the
square on graph paper, cut out the four pieces,
and rearrange them to make the rectangle. Unless
the pieces are very large, and drawn and cut with
extreme precision, you will not notice the tiny
overlap along the rectangle’s main diagonal, It is
this failure of the pieces to fit properly along the
diagonal that accounts for the missing square unit
of area. If you doubt the existence of this overlap,
one way to prove it is to calculate the slope of the
rectangle’s diagonal and compare it with the
slopes of the pieces.

What happens if the rectangle is drawn on the
graph paper, the pieces cut, and then formed into
the square? You might wish to investigate this.

Four lengths are involved in this paradox: 5, 8,
13, and 21. You may recognize these numbers as
four terms in a famous sequence. Can you give
the recursive rule for the terms? The sequence is
the Fibonacci sequence in which each term is the
sum of the two preceding terms: 1, 1, 2, 3, 5, 8,
13,21, 34,....

Variants of the paradox are based on other sets
of four consecutive terms in the Fibonacci
sequence. In every case you will find that the
rectangle has a different area from the square, but
sometimes the rectangle gains an extra square
unit, sometimes it loses. The next step is the
discovery that when there is a loss it is because of
a rhombus-shaped overlap along the rectangle’s
diagonal, and where there is a gain it is because of
a rhombus-shaped gap.



Given the four terms of the Fibonacci sequence
on which a variant is based, can one predict
whether there will be a loss or gain? The paradox
illustrates one of the fundamental properties of the
Fibonacci sequence. If any number in the
sequence is squared, it equals the product of the
two numbers on either side of it, plus or minus 1.
Expressed algebraically,

tnz = (tn—l.tn+l) * 1

The left side of the above equation clearly gives
the area of the square, and the right side clearly
gives the area of the rectangle. The plus and
minus signs alternate throughout the sequence.
Every Fibonacci number located at an odd
position in the series (for example, 2, 5, or 13 in
the Fibonacci series above)} has a square that is 1
greater than the product of the two adjacent
numbers in the even positions on either side.
Conversely, every number located in an even
position (for example, 3, 8, or 21 in the Fibonacci
series above) has a square that is 1 less than the
product of its two adjacent numbers in the odd
positions on either side. Once you know this, it is
easy to predict whether the rectangle of a
particular square pattern will gain or lose a unit of
area,

The Fibonacci sequence starts with 1, 1, but a
“generalized Fibonacci sequence” can start with
any pair of numbers. You can explore variants of
the paradox based on other Fibonacci sequences.
For example, the sequence 2, 4, 6, 10, 16, 26,

. . . gives losses and gains of 4 square units. The
sequence 3, 4, 7, 11, 18, . . . gives losses and
gains of 5 square units.

Let a, b, ¢ stand for any three consecutive terms
in a generalized Fibonacci sequence, and x for the
loss or gain. Two formulas hold:

a+b=c¢

b2 = ac + x

We can substitute for x whatever loss or gain we
desire, and for b whatever length we wish for the
side of the square. Solving the two simultaneous
equations then provides values for a and c,
though they may not be rational numbers.

Can the square be cut in such a way that when
the four pieces are rearranged, the rectangle will
have precisely the same area as the square?

To answer this, let x = 0 in the second of the
above two equations, and solve for b in terms of
a. The only positive solution is

_(1+V5)a
-

The expression (1 + \/5)/2 is the famous
golden ratio, or phi, written ¢. This is an irrational
number equal to 1.618033. . . . In other words,
the only Fibonacci sequence in which the squarg
of a term exactly equals the product of its two
adjacent numbers is

L &, 4% ¢% &7, ...

With some manipulation of radicals we could
prove that the above sequence is a true Fibonacci
sequence by showing it is equivalent to

1,6, + 1,26 +1,3b +2,...

b

Only by cutting the square with lengths that are
consecutive numbers in the above sequence can
we produce a variant of the paradox for which
the areas of the square and the rectangle are
identical. For more on the golden ratio, and its
relation to the square—rectangle paradox, see the
chapter on ¢ in my Second Scientific American
Book of Mathematical Puzzles and Diversions.
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A few months later, Mr.
Randi returned with a rug
12 decimeters by 12 deci-
meters.

Randi: Omar, old pal, my
electric heater overtumed
and burned this beautiful
carpet. By cutting and sew-
ing, it will be easy to get rid
of the hole.

Omar was doubtful, but he
followed Mr. Randi’s
instructions. After the pieces
were sewn together, the rug
was still 12-by-12 but the
hole had vanished!

Omar: Please, Mr. Randi,
how did you do it? Where
did that square decimeter

come from to fill the hole?

How can two identical squares have different
areas? In Randi’s second rug paradox, the loss of
area appears as an actual hole. Unlike the
previous paradox, there is an accurate fitting along
the sloping line in both patterns. What happens to
that missing square unit?

To find the answer, make two copies of the
square without the hole. The larger the patterns
the better. One square should then be cut
accurately, the pieces rearranged to make the
hole, and this second pattern placed on top of the
first. If the top and sides are flush, you discover
that the second pattern is not a true square. It is a
rectangle that is higher than the square by a length
of 1/12 decimeter. This 12-by-1/12 strip along the
bottom has the same area as the hole.

That explains where the missing square unit
goes. But why does the square grow in height?
The secret is that the vertex on the hypotenuse of
the triangular piece is not on a lattice point.
Knowing this you can construct variants of the
square in which the loss or gain of area is more
than 1 square unit.

The paradox is known as a Curry square after
its inventor, Paul Curry, an amateur New York
magician. It has numerous variations, including
triangular forms. If you want to know more about
Curry squares and triangles, see Chapter 8 of my
Mathematics, Magic and Mystery and Chapter 11
of my New Mathematical Diversions from
Scientific American.



The Vanishing Leprechaun

The funniest versions of these paradoxes are
those in which a drawing of a person is caused to
disappear. Consider, for example, The Vanishing
Leprechaun Puzzle, drawn by Pat Patterson of
Toronto, copyrighted and sold by the Elliott
Company of Toronto. The puzzle is reproduced
below. To avoid damaging the book, photocopy it,
then cut the border and along the dotted lines to
make three rectangles. Switch the two top

rectangles, and one of the fifteen leprechauns
disappears without a trace! Which one vanished?
Where did he go? When he comes back, where
has he been?

If you would like to obtain a deluxe version
of this paradox, printed in color on cardboard 19
inches long, write for the current price to W. A,
Elliott Company, 212 Adelaide Street West,
Toronto, Ontario, Canada M5H 1W7,

it vy caiinlly iidig H dlBE B3
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© Copyright 1968, W. A. Elliott Co., Toronto, Canada.
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Vanishing-person paradoxes have been used for
more than a century as advertising premiums. In
the 1880s, the American puzzle inventor Sam
Loyd issued a circular version in which a Chinese
warrior seems to vanish when a disk is rotated.
Many other versions, both straight and circular,
have been printed since.

The best way to explain the paradox is to rule
ten lines on a card like this:

.17

A

Cut the card along the dotted line, and then
slide the lower part down and left.

A7

Count the lines. There are only nine! It is
meaningless to ask which of the original ten lines
vanished. What has happened is that the ten lines
have been broken into 18 parts, and those parts
rearranged to make a new set of nine lines. Each
of the nine lines is, of course, longer by 1/9 than
each of the ten lines. When we slide the lower
part back up again, a tenth line appears, and now
the lines are shorter by 1/10 than they were
before.

Exactly the same thing happens with the
leprechauns. When there are 15 leprechauns,
each is shorter by 1/15 than when there are 14.
We cannot pick out a leprechaun that vanishes
when we change the pieces, because the set of 14
is a set of completely different leprechauns. Each
is longer by 1/14 than before. For a lengthy
discussion of this paradox, and others related to it,
see Chapter 7 of my Mathematics, Magic and
Mystery.

The principle behind this paradox is also the
basis of an old counterfeiting method. It is possible
to cut 9 bills into 18 parts (following the pattern of
the lines) and to rearrange them to make 10 bills.
However, the new bills are easy to detect because
their numbers will not match. The two numbers on
all U.S. bills are placed on opposite ends, one
high and one low, precisely to foil this
counterfeiting scheme. In 1968, a man in London
was sentenced to eight years in prison for using
the scheme on British 5-pound notes.



The Great Bank Swindle

Believe it or not, these par-
adoxes have something in
common with the method
used by an unscrupulous
computer programmer to
steal from a large bank.

Thief: Man, am | a genius!
I'll be ripping off $500 a
month, and it’s so easy! ['ve
just told our computer to
round down every cus-
tomer’s account instead of
rounding up or down to the
nearest penny.

Thief: Each customer will
lose about half a penny
every month. That's too
small for anyone to notice.
But the bank has a hundred
thousand customers, so the
total loss is $500. Each
month the computer will
deposit it to my secret
account, and the books will
always balance!

Vanishing-area paradoxes operate by stealing tiny
bits of area from many spots. Randi’s first rug,
after its pieces are rearranged, has an
imperceptible overlap along the rectangle’s main
diagonal. Randi’s second rug, after it is cut and
reformed, shrinks in height by a trifle amount.
After a leprechaun disappears, each leprechaun is
slightly taller than the previous figures. After $500
appears in the thief’s account, some of the
customers’ accounts were credited a penny less
interest than they should have been.
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The Amazing Inside-Out Doughnut
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Topology is called rubber-
sheet geometry because it
studies properties that do
not change when a figure is
stretched or distorted.

A torus is a fascinating sur-
face shaped like a dough-
nut. Would you believe that
a torus made of thin rubber,
with a big hole in it, can be
turned inside out through
the hole? It can be done
but it'’s very difficult.

Before the torus is reversed,
suppose we glue a small
rubber band around its
inside and a larger rubber
band around its outside.
The two bands are not
interlocked.

This is how the torus should
look after it has been
reversed. But now the two
elastic bands are linked! It's
impossible to link two
bands without cutting and
gluing, so something is
wrong. But what?

It is true that a torus can be turned inside out
through a hole, but this will not interlink the two
rubber bands. The reason is that when the torus is
reversed, the bands change places! After the
reversal, the small band has been stretched to the
larger one and the large band has shrunk to the
smaller, so that the bands are as unlinked as
before. The key to the paradox lies in the fact that
the artist deliberately drew the second picture to
show what we would expect to see, rather than
what actually happens.

A rubber model of a torus, such as an inner
tube, is very difficult to turn inside out through a
hole because the rubber has to be stretched so
radically. But it is easily done with a cloth model.
Fold a square piece of cloth in half and sew
opposite edges together to make a tube. Now fold
the cloth the other way and sew the opposite
ends of the tube together to make a torus. It will
be square-shaped when flattened. For ease in
reversing, the “hole” is a slot cut horizontally in
the outer layer of cloth.

Turning this cloth torus inside out through the
slotted hole is easy. After the reversal, the torus
has the same shape as before, except now the slot
is vertical, and the grain of the cloth has also been
turned 90 degrees. In other words, lines that
previously circled the torus one way now circle it
the other way. To see how this turning of the
“grain” explains the switch of the two elastic
bands, you can use two felt-tip pens to ink a ring
of one color around the torus one way, and a ring
of another color around the torus the other way.
After turning the torus inside out, you will see that
the rings have exchanged positions.



It is not easy to visualize exactly how the torus is
distorted during the reversal process. A series of
drawings, showing all stages of the reversal, can
be found in “Topology” by Albert Tucker and
Herbert Bailey in Scientific American, January
1950, and on p. 179 of Mathematics, Life Science
Library.

There are many other torus paradoxes. For
example, if a torus without a hole is linked to a
torus with a hole, can the one with the hole
“swallow” the other torus so that it is completely
inside? The answer is yes, and you will see how it
is done if you consult my Scientific American
column of March 1977. More paradoxes involving
toruses are in my columns of December 1972 {on
knotted toruses) and December 1579,
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The Bewildering Braid
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Wendy is shopping for a
leather bracelet.

Inside Luke’s shop she sees
two bracelets, each made of
3 leather thongs. One is
braided, the other is not.
Wendy: How much is that
braided one?

Luke: Five dollars, ma'am.
But you’re too late. I've just
sold it.

Wendy: Oh dear! Do you
have another?

Luke: Yes, | have this one.
Wendy: But its not
braided.

Luke: I'll be happy to
braid it for you, ma’am.

It looks impossible, but
Luke braided the bracelet
in 30 seconds, and without
cutting a single thong!
Here’s how he started.



The astonishing thing about the bracelet is that the
six-crossing braid can be formed even though the
ends of the strands are permanently attached to
each other. In other words, the braided bracelet is
topologically equivalent to the unbraided one. The
picture below shows one procedure for forming
the braid. By repeating it, with longer strands, one
can extend the braid to any multiple of six
crossings. To make an actual bracelet or a braided
belt from a piece of stiff leather, first soak it in
warm water to make the leather pliable.

Braids of this sort can be made with more than
three strands. More information can be found in J.
A. H. Shepperd’s “Braids Which Can Be Plaited
with Their Threads Tied Together at Each End”
(Proceedings of the Royal Society, A, vol. 265
(1962), pp. 229-244). See also the chapter,
“Group Theory and Braids,” in my New
Mathematical Diversions from Scientific American.

Most people will see this bracelet as just another
topological curiosity, but it is much more than
that. Emil Artin, a famous German mathematician
who settled in the United States, developed a
theory of braiding in which he applied group
theory. Thus, the “elements” of the group are
“weaving patterns,” the “operation” consists of
following one pattern with another, and the
“inverse” of a weaving pattern is its mirror image.
Braids provide an excellent jumping-off point for
discovering groups and transformations. (A good
introduction to braid theory is Artin’s article “The
Theory of Braids” in The Mathematics Teacher,
May 1959.)
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The Inescapable Point
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Pat hiked up a narrow trail
that leads to a mountain
top. He started at 7:00 that
morning and arrived at the
summit at 7:00 that night.

After a night of meditation
on the summit, Pat started
back down the trail at 7:00
in the mormning.

At 7:00 that evening, when
he reached the bottom, Pat
happened to meet Ms.
Klein, his topology teacher.
Ms. Kilein: Hello, Pat. Did
you know that coming
down today you passed a
certain spot at precisely the
same time as you did yes-
terday on your way up?
Pat: You must be putting
me on. It can’t be! 1 walked
at different speeds. | even
stopped to eat and rest.

But Ms. Klein was right.
Ms. Klein: When you
started up the mountain,
suppose you had a double
who started down at the
same time. No matter what
your double’s schedule,
somewhere along the trail,
the two of you are sure to
meet,

Ms. Klein: We can’t say
where you’ll meet, but we
know it will be somewhere.
You and your double will
be there at the same time.
So there has to be a point
on the trail that you pass at
the same instant on your up
and down trips.



If for each point on the path we pair Pat’s arrival
time going up with his arrival time going down we
get a correspondence between times. At least one
of these times must be matched up with itself.
Thus the story about Pat illustrates a very simple
example of what topologists call a fixed-point
theorem. The proof is an “existence proof.” It
does no more than establish the existence of at
least one fixed point. It provides no help in
locating the fixed point. Fixed-point theorems are
extremely important in the application of topology
to many branches of mathematics and science.

A famous fixed-point theorem can be
demonstrated with a shallow box and a piece of
paper that exactly covers the bottom of the box.
Imagine that every point on the paper is paired
with a point directly beneath it on the bottom of
the box. Pick up the paper, crumple it into a ball,
and drop it back in the box. Topologists have
proved that no matter how the paper is crumpled,
or where it falls in the box, there must be at least
one point on the paper that is directly above its
corresponding point on the box! See “A Fixed
Point Theorem” in What is Mathematics? by
Richard Courant and Herbert Robbins.

This theorem, first proved by the Dutch
mathematician L. E. J. Brouwer in 1912, has
many curious applications. For example, it
establishes that at every instant there is at least
one spot on the earth where no wind is blowing.
One can also prove that on the earth there are
always at least two antipodal points (points joined
by a straight line through the earth’s center) that
have exactly the same temperature and barometric
pressure. A similar theorem can also be used to
prove that if a sphere is completely covered with
hair it is impossible to comb all the hairs flat. (One
can comb flat all the hairs on a doughnut.) For a
good introduction to such theorems see “Fixed-
Point Theorems,” by Marvin Shinbrot, in Scientific
American, January 1966.
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Impossible Objects

If Pat was surprised by that
point, he’d be even more
surprised by this stairway,
He can walk around it for-
ever, always climbing up,
but always coming back to
where he started|

Are there two or three
prongs on the knight's
weapon?

Could you build a model of
this crazy crate?
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The stairway, the weapon, and the crate are callec
“impossible objects” or “undecidable figures.” The
impossible stairway was invented by the British
geneticist Lionel S. Penrose and his
mathematician son Roger Penrose, who first
published it in 1958. It is often called the Penrose
staircase. The Dutch artist M. C. Escher was
fascinated by it. He made effective use of it in one
of his lithographs, Ascending and Descending.

The impossible figure of two or three prongs is
of unknown origin. It began circulating among
engineers and others about 1964. Mad Magazine,
March 1965, had a cover that showed Alfred E.
Neuman balancing one of these objects on his
index finger.

The crazy crate, also of unknown origin,
appears in another Escher picture, Belvedere, All
three objects show how easily we can be tricked
into thinking that a geometrical diagram represent:
a genuine structure when the structure is logically
contradictory and therefore cannot exist. The
objects are visual analogs of such undecidable
sentences as “This sentence is false” discussed in
Chapter 1.

For more examples of undecidable figures see
the chapter on optical illusions in my
Mathematical Circus and the books of the
Japanese graphic artist Mitsumasa Anno,
especially Anno’s Alphabet and Anno’s Unique
World.



A Pathological Curve

8 B The snowflake curve is
another paradoxical figure,
but it is not impossible. We
start constructing it with the
shape of this Christmas
tree—an equilateral trian-

dle.

By drawing a shaded equi-
lateral triangle on the cen-
tral third of each side of the
light one, this little angel
produces a six-pointed star.

He repeats the construction
by drawing still smaller tri-
angles on the sides of the
star. The curve is getting
longer and starting to look
like a snowflake.

The next repetition makes
the curve still longer and
prettier.

Continuing in this way, the
curve becomes as long as
one likes. It can be drawn
on a postage stamp, yet
made as long as the dis-
tance from earth to the far-
thest star!

The snowflake curve is one of the prettiest of an
infinite class of curves called pathological because
of their paradoxical properties. If the construction
of the snowflake is continued ad infinitum, its
length at the limit is infinite, yet it encloses a finite
area! Put another way, the successive lengths of
the curve, at each step, form a divergent series,
but the successive areas enclosed by the curve
form a series that converges on an area 8/5 of the
original triangle. Moreowver, it is impossible to
define a tangent for any point on the limit curve.

The snowflake curve is a good way to
consolidate the concept of limit. Can you show
that if the starting triangle has an area of 1, the
curve’s limiting area is 8/57

Here are some related constructions:

1. Construct the anti-snowflake by drawing the
triangles inward instead of outward, and erasing
the base lines. The first step produces three
diamonds meeting at a point like three propeller
blades. Is this also a curve that is infinite in length
at the limit? Does it also enclose a finite area?

2. What happens when you use other regular
polygons as the basis of construction?

3. Investigate the effect of constructing more
than one polygon on each side.

4. Are there 3-dimensional analogs of the
snowflake and its cousins? For example, if
tetrahedrons are constructed on the faces of
tetrahedrons, will the limit solid have an infinite
surface area? Will it bound a finite volume?

For a paradoxical curve discovered by William
Gosper, called the “flowsnake,” see my column on
pathological curves in Scientific American,
December 1976. Another remarkable curve,
discovered by Benoit Mandelbrot, was depicted
on the cover of Scientific American, April 1978,
and discussed in my column for the same issue.
See Mandelbrot’s book The Fractal Geometry of
Nature for more on pathological curves related to
the snowflake.
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The Unknown Universe
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If a spaceship blasted off
and kept going in a straight
line, would it get farther
and farther from the earth?
Maybe not, suggested Ein-
stein. It might come back to
earth!

To understand Einstein’s
paradox, first consider this
poor Pointlander. He lives
on a single point. His uni-
verse has no dimensions,

The Linelander who lives
on a line of one dimension
is like the worm on this
rope. If the rope is infinite,
he can travel forever in
either direction.

However, if the rope is
closed like a circle, it
becomes a line that is
unbounded, yet finite in
length. If the worm crawls
either way, it will return to
its starting point.
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The Flatlander lives on a
surface of two dimensions.
If his universe is an infinite
plane, he can travel on it
forever in any direction.

But if his surface is closed
like that of a sphere, it too
becomes finite and
unbounded. He too will
return to where he started if
he travels along a straight
line path in any direction.

You and [ are Solidlanders
who live in a 3-dimensional
space, Perhaps it is infinite
in all directions.

Or, as Einstein thought, it
may curve through a higher
space to form another finite
but unbounded universe. A
spaceship speeding through
such a universe, along the
straightest possible path,
would eventually return
home.
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When a Flatlander circles a
sphere, it is like walking
around an untwisted band.
If he has a heart on one
side, it stays on the same
side.

But if a Flatlander goes
around a Moebius band,

something strange happens.

The twist flips him over so
that he returns with his
heart on the other side!

If our space is closed, it
could be twisted the way a
Moebius strip twists. An
astronaut who made a
round trip through such a
space would come back
reversed.

Astronomers do not yet know whether the space
of our universe is closed, as Einstein suggested, or
open. It all depends on how much matter is in the
universe. According to the general theory of
relativity, the presence of matter in space causes
space to “curve,” and the amount of curvature
increases as the proportion of matter increases.
Most cosmologists today believe there is not
enough matter to produce a curvature great
enough to close space. However, the issue is still
open because the nature and density of matter in
the universe are not yet known. The universe may
contain enough “hidden matter” to close itself. (At
the moment, neutrinos are suspected of having
positive rest mass rather than having a rest mass
of zero as was formerly believed).

There is no evidence that the space of our
universe twists like a Moebius strip, but
cosmologists like to invent different models of the
cosmos, and in some of these models, space has a
twist. In understanding how a Flatlander would get
mirror-reversed by going once around a Moebius
strip, it is important to realize that the strip has
zero thickness. A paper model of a Moebius
surface is really a solid, because the paper has
thickness. We must assume that the true Moebius
surface has no thickness.

A plane figure drawn on a Moebius strip is like
a figure drawn with ink that soaks through the
paper so that it is on both “sides,” not a figure that
slides along one side only. It is “embedded” in the
surface. When it makes one trip around the strip,
it arrives at its starting point in reversed form. Of
course, a second trip around the strip brings it
back to unreflected form. In the same way, if an
astronaut made a round trip through a twisted
cosmos, he would return reversed, but a second
trip would straighten him out again.
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If you are intrigued by the paradoxical
properties of the Moebius strip, you may wish to
investigate two other surfaces equally paradoxical:
the Klein bottle and the projective plane. Both are
one-sided, but unlike the Moebius surface they
have no edges. Both are closed like the surface of
a sphere. The Klein bottle is closely related to the
Moebius strip because it can be cut in half to
make two Moebius strips that are mirror images of
one another. A Flatlander embedded in either a
Klein bottle or a projective plane can mirror-reflect
himself by making a trip around the surface (see
Chapter 2 of my Sixth Book of Mathematical
Games from Scientific American). The classic
book about life in two dimensions is Edwin A.
Abbott’s Flatiand. A sequel, Sphereland, was
written by Dionys Burger.

You might also enjoy a story by H. G. Wells
called “The Plattner Story” (in his collection 28
Science Fiction Stories). This science fiction tale is
about a man who gets himself reversed in outer
space and returns with his heart on the wrong
side.
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Antimatter
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A reversed astronaut would
feel normal, but the world
around him would seem
mirror-reflected. Printing
would go the wrong way,.
Cars would be on the
wrong side of the road.

Many physicists believe that
reflected matter would
become antimatter, which is
annihilated when it contacts
ordinary matter. If so, our
reversed astronaut could
never get back to the earth.
As soon as his reversed
spaceship touched our
atmosphere, it would
explode!

Does our universe contain
galaxies of antimatter? Are
there vast universes of anti-
matter outside our own?
Cosmologists today can
only guess at the answers.

Every fundamental particle has an antiparticle that
is the same as the particle except that its electric
charge (if it has one) is reversed, as well as other
properties. Many physicists believe that an
antiparticle is simply a particle whose internal
structure is mirror-reflected. Matter made of
antiparticles is called antimatter.

When a particle meets an antiparticle, there is
mutual annihilation. Qur galaxy is made entirely
of matter, so whenever an antiparticle is created,
either in the laboratory or in the interior of stars, it
lasts only for a microsecond before it is destroyed
by meeting its opposite particle.

Most cosmologists believe that the universe
consists only of matter, but a few have argued for
the possibility that it may contain galaxies of
antimatter. Light from such galaxies would be
indistinguishable from light from galaxies made of
matter, so it is difficult to know. Some cosmoloagists
have speculated that immediately after the Big
Bang, which presumably started the universe
evolving, matter and antimatter may have
separated to form two universes: a “cosmon” and
an “anticosmon,” which repelled each other and
separated at great speed.

The notion that the universe is divided into
these two parts, each a kind of mirror image of the
other, has played a role in many science fiction
stories and in Vladimir Nabokov’s romantic novel
Ada. You can find more about antimatter and
related topics by reading Chen Ning Yang,
Elementary Particles; Hannes Alfvén,
Worlds—Antiworlds; and my Ambidextrous
Universe.
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4} Probability

Paradoxes about chance, wagers, and beliefs
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Probability theory has become so essential in
every branch of science, not only in the physical
sciences but also in the biological and social
sciences, that it is safe to predict that in the years
to come it will be emphasized more and more in
the teaching of mathematics in elementary grades.
Bishop Joseph Butler and others before him
(Cicero, to mention one) have said that probability
is the very guide of life, From morning until night
we live by making thousands of unconscious little
bets about probable outcomes. If quantum
mechanics is the final word in physics, pure
chance underlies all of nature’s fundamental laws.

More than most branches of mathematics,
probability swarms with results that are strongly
counterintuitive, with problems for which the
correct solution seems utterly contrary to
common sense. If you walked up to an elevator
door, you might expect the chances to be
fifty—fifty that the first time the elevator stops it will
be on its way up. Paradoxically, this is generally
false. In a family with four children you might
expect that the most likely situation would be two
children of each sex, but this is also false.

The simple ideas of probability introduced here
will help you understand why the bets that appear
favorable in chuck-a-luck are actually unfavorable.
More generally, these ideas are useful in
understanding why amazing coincidences really
are not so amazing, but we leave that to the next
chapter.

The paradoxes in this chapter have been
selected because they are easy to understand and
because many of them can be modeled with such
readily accessible materials as coins and playing
cards. Wherever possible, a paradox has been
explained by listing all the equally possible cases
even though the problem can be solved in shorter
ways using probability theory. By solving them the
longer way, you gain an insight into the problem’s
structure that is not obtainable otherwise.

Although ultimately there may be only one kind
of probability, it is customary these days to
distinguish at least three main types:

1. Classical or a priori probability. Here we
assume that each outcome is equally likely. If an
event is found to have n equally likely outcomes,
and you want to know the probability that a
certain subset k of those outcomes will take place,
the answer is the fraction k/n. For example, a
rolling die, if the die is fairly made, has six faces
each equally likely to show on top. What is the
probability you will roll an even number? Of the
six equiprobable cases (1, 2, 3, 4, 5, 6) three are
even (2,4,6), therefore the probability of rolling an
even number is 3/6 = 1/2. Put another way, the
odds are even. It is a fair bet.

2. Frequency or statistical probability. This
concerns events that do not seem, a priori, to be
equally probable. The best we can do is repeat or
observe the event many times and note the
frequency with which certain outcomes occur. An
example would be a die loaded in a manner that
cannot be easily determined by inspection. So
you roll it hundreds of times. By keeping records
you conclude that the probability of rolling, say, a
6 is about 7/10 instead of the familiar 1/6 for a fair
die.

3. Inductive probability. This is the degree of
credibility a scientist assigns to a law or theory,.
Insufficient knowledge of nature precludes a
classical solution, and experiments or observations
are too infrequent and vague to permit accurate
frequency estimates. For example, a scientist
considers all the relevant evidence based on the
scientific knowledge of his time and concludes it is
more likely than not that black holes exist in the
universe. Such probability estimates, necessarily
imprecise, constantly change as new evidence is
found that bears on the hypothesis.
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Our last two paradoxes touch on inductive
probability, as do the last two paradoxes of the
next chapter. If you read more about such
paradoxes, you will find yourself plunging into
some of the deepest waters of modern probability
theory and the philosophy of science.
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The Gambler’s Fallacy

Mr. and Mrs. Jones have
five children, all girls.

Mrs. Jones: | do hope
our next child isn’t another
girl.

Mr. Jones: My dear, after
five females, it’s bound to
be a boy.

Is Mr. Jones right?

Many gamblers think they
can win at roulette by wait-
ing until there is a long run
of red numbers, then bet-
ting on black. Will such a
system work?

Edgar Allan Poe argued
that if you roll five twos in a
row, your chances of getting
a two on the next roll are
less than one-sixth. Was he
right?

If you answered yes to any
of these questions, you
have fallen into a trap called
the “gambler’s fallacy.” In
every case the next event is
completely independent of
all previous events.

The probability of Mr. and
Mrs, dones having a sixth
girl is the same as that of her
first child having been a

g A girl. The probability of the

next roulette number being

= red is the same as that of

the previous number having
been red. The probability
of a two on the next throw
of the die is still one-sixth.

To make this clearer, sup-
pose Mr. Jones tosses five
heads in a row with a fair
coin. The chances of toss-
ing heads again is exactly
the same as before: fifty-
fitty. The coin has no mem-
ory of what it did on pre-
vious flips.
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If the outcome of event A influences event B, then
B is said to be “dependent” on A. For example,
the probability of your wearing a raincoat
tomorrow clearly depends on the probability of
rain tomorrow, or (more directly) on how you
estimate that probability. Events that in ordinary
language are said “to have nothing to do with
each other” are called “independent” events. The
probability of your wearing a raincoat tomorrow is
independent of the probability that the President
of the United States has eggs tomorrow for
breakfast.

Most people find it difficult to believe that the
probability of an independent event is not
somehow influenced by its proximity to other
independent events of the same sort. During
World War |, for example, soldiers on the front
looked for fresh shell holes to hide in. They were
convinced that old shell holes were risky because
they believed it would be high time for new shells
to land in the same spot. Because it seems
unlikely that two shells would fall on the same
spot, one right after the other, they reasoned that
a fresh shell hole would remain safe for quite
some time.

A story was told many years ago about a man
who traveled a lot in airplanes. Fearful that a
passenger might someday take aboard a
concealed bomb, he always carried in his
briefcase an unloaded bomb of his own. He knew
it was unlikely that a plane would have one
passenger with a bomb, so he reasoned it would
be very much more unlikely that a plane would

have two passengers with a bomb. Of course
carrying his own bomb would have no effect on
the probability that another passenger had a
bomb, any more than the flip of one penny can
be influenced by the flip of another penny,.

The most popular of all roulette systems, known
as the d’Alembert system, is based squarely on
the “gambler’s fallacy” of not recognizing the
independence of independent events. The player
bets on red or black (or makes any other even-
money bet), following it with a larger bet after
each loss and a smaller bet after each win. The
assumption is that if the little ivory ball allows him
to win, it will somehow “remember” that and be
less likely to let him win the next time. And if the
ball causes him to lose, it will feel sorry for him
and be more likely to help him on the next spin of
the wheel.

The fact that each spin of a fair roulette wheel is
independent of all previous spins provides a very
simple proof that no roulette system can give a
player an advantage over the house. The word
odds can be used with two meanings. The odds
that a fair coin will fall heads up are even or 1 to 1
(or 5 to 5). But a bookie, mindful of his need to
turn a profit, might pay off $4 for your bet of $5
on heads. He says, “The odds on heads are 4 to
5.” He would be offering you less than correct
odds. In his Complete Guide to Gambling, John
Scame puts it this way:

When you make a bet at less than the correct
odds, which you always do in any organized
gambling operation, you are paying the operator
a percentage charge for the privilege of making a
bet. Your chance of winning has what
mathematicians call a “minus expectation.” When
you use a system, you make a series of bets, each
of which has a minus expectation. There is no
way of adding minuses to get a plus. . . .



Edgar Allan Poe’s howler about dice occurs in
the postscript to his detective story, “The Mystery
of Marie Roget.” A die, like a penny, a roulette
wheel, or any other randomizing device, produces
a series of independent events that are not
influenced in any way by the device’s previous
behavior.

If you are inclined to believe in some form of
the gambler’s fallacy, test it by simulating an actual
game in which you play a system based on the
fallacy. For example, toss a penny repeatedly,
betting a poker chip, at even odds, only after runs
of three showings of the same side. Always bet on
the coin’s opposite side. In other words, after three
heads, bet tails, and after three tails bet heads. At
the end of, say, 50 such bets it is unlikely you will
have exactly the same number of chips you began
with, but it should be close. The probability of
being ahead or behind is, of course, equal.
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Four Kittens

It's easy to go wrong calcu-
lating probabilities. Here
are two cats that have been
hanging out together.

Mr. Katz: Love, how
many kittens are in our new
litter?

Mrs. Katz: Can’t you
count? Four, you big dope.
Mr. Katz: How many
boys?

Mrs. Katz: It’s hard to tell.
[ don’t know yet.

Mr. Katz: It's not very
likely that all four are boys.

Mrs. Katz: And it's not
likely they're all girls.

Mr. Katz: Maybe just one
is a boy.
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Mrs. Katz: Or maybe just
one is a girl.

Mr. Katz: It's not so hard
to figure out. There’s a fifty-
fifty chance each kitten is a
boy or girl. So it's obvious
that the most likely out-
come is two boys and two
girls. Have you named
them yet?

Has Mr. Katz reasoned cor-
rectly? Let’s check out his
theory. Using “B” for a boy
and “G” for a girl, list all 16
of the equally possible
cases.

Only 2 of the 16 cases
show all kittens of the same
sex. So the probability of
this happening is 2/16 or
1/8. Mr. Katz was right in
thinking that this outcome
had a low probability.

Now let’s check the 2-2
split that Mr. Katz thought
the most likely. It happens
six times. So the probability
is 6/16 or 3/8. This is surely
higher than 1/8. Mr. Katz
may be right.
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But we have one more pos-
sibility to consider: a 3-1
split. Because this occurs in
eight cases, the probability
is 8/16 or 1/2. This is even
higher than the 2-2 split.
Could we have made a mis-
take?

If our probabilities are cor-
rect, they should add to 1.
They do. This tells us it is
certain that one of the three
splits will occur. Mr. Katz's
guess was wrong. The most
likely split is not 2—2, but

That four children in a family are more likely to
consist of three of one sex and one of another,
than to consist of two boys and two girls, is
surprising to most people. It is easily tested by
repeatedly tossing four pennies. Keep a record of
each toss. After a hundred tosses, approximately
50 should show a 3-1 split compared to about 33
that show a 2-2 split.

You may be curious about the probabilities of
the different sex distributions in families of five
and six children. These can be found by listing all
combinations, but this is tedious. You might find it
easier to use shorter methods found in books on
probability.

A similar problem, with an equally counter-
intuitive answer, concerns the most likely way
that the four suits are distributed in a bridge hand.
The least likely, of course, is to hold 13 cards
of one suit. (The odds against this happening
to you are 158,753,389,899 to 1.) But what
distribution of suits is most likely to occur?

Even seasoned bridge players often guess the
answer to be 4, 3, 3, 3. This is incorrect. The most
probable hand is a 4, 4, 3, 2 distribution. You can
expect to get a hand of this sort about once every
five deals compared to once every nine or ten
deals for a 4, 3, 3, 3 hand. Even a 5, 3, 3, 2 hand
is likely to occur about once in every six deals. For
a chart giving the probabilities of all possible suit
distributions, see Oswald Jacoby, How to Figure
the Odds.
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Every now and then you see a newspaper story
about someone getting a perfect bridge hand. The
odds against this are so astronomical that the story
is almost certainly a hoax, or someone at the table
was a practical joker who secretly arranged the
cards, or perhaps a new deck was opened and
someone accidently gave it two perfect riffle
shuffles. A perfect shuffle is one that divides the
deck exactly in half, then interlaces alternate cards.
New decks come with the four suits separated.
Two perfect shuffles, followed by any kind of cut,
will set a deck for dealing four perfect bridge
hands.
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Three-Card Swindle

In many gambling games,
trusting your intuition about
probability can be disas-
trous. A simple betting
game with three cards and
a hat proves it.

The mirror reflection makes
it easy to see how the cards
are made. The first card has
a spade on both sides. The
last card has a diamond on
both sides. The middle card
has a spade on one side
and a diamond on the
other.

The banker shakes the
cards in a hat and lets you
pick one and put it on the
table. He then bets even
money that the underside
suit is the same as the top.
Suppose the top of your
chosen card is a diamond.

To con you into thinking it a
fair game, the banker tells
you that your card cannot
be the spade—spade card.
Therefore it is either the
spade—~diamond card, or
the diamond—diamond
card. One has a diamond
on the bottom, the other a
spade, so you and he have
equal chances of winning.

If the game is fair, how is it
that the banker so quickly
rakes in your money? It’s
because his argument is
phony. The actual odds are
two to one in his favor!

The catch is that there are
three, not two, equally
likely cases. The drawn
card can be spade—
diamond, or diamond-—
diamond with side A on
top, or diamond—diamond
with side B on top. The
bottom matches the top in
two cases. Therefore, in the
long run the banker wins
two out of three games.
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This card-betting game was designed by Warren
Weaver, the distinguished mathematician who is
one of the co-founders of information theory. He
introduced it in the article “Probability” in
Scientific American, October 1950.

One way of explaining the game’s true odds is
given above. Here is another. Two cards each
have matching colors. If you take a card at
random from the hat, the probability is 2/3, or 2
out of 3, that you will get one of those two cards.
Therefore, the probability is 2/3 that the underside
of the selected card will match its top.

The card game is a variation of what is known
as Bertrand’s box paradox, after J. Bertrand, a
French mathematician who presented it in a book
on probability in 1889. Bertrand imagined three
boxes. One contains two gold coins, one contains
two silver coins, and one has a gold coin and a
silver coin. A box is picked at random. Clearly the
probability is 2/3 that this box contains matching
coins.

Suppose, however, that we take one coin from
the chosen box and observe that it is gold. This
tells us that the box cannot be the silver—silver
box. Therefore it must be the gold—gold or the
gold—silver box. Since each of these two boxes is
equally likely to have been chosen, it seems as if
the probability we have taken a box of matching
coins has gone down to 1/2. The same argument
would apply if our sample coin had been silver,

How can looking at one coin in the box alter

the probability of that box holding matching coins?

Clearly it cannot.
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Here’s a related paradox. What is the probability
that if you toss three coins, all of them fall alike?
At least two of the three must be alike. The third
coin will either match that pair or be different.
Since the chances are fifty—fifty it will fall either
way, the chances are even that it will match.
Therefore the probability all three coins are alike
seems to be 1/2.

We can show this reasoning to be wrong by
listing the eight possible cases:

HHH THH
HHT THT
HTH TTH
HTT TTT

Observe that only two of the cases show all
three coins the same. The correct probability,
therefore is 2/8 = 1/4,



Another bewildering little paradox, again arising Which argument is correct? To settle the matter,

from a failure to consider all possible cases,

we make an exhaustive list of not four but six

involves a boy with one marble and a girl with two possible cases. The equally possible orderings of

marbles. They roll their marbles toward a stake in marbles, listing the nearest marble first, are:
the ground. The person whose marble is closest to ABC
the stake wins. Assume that the boy and the girl
. ACB
are equally skillful and that measurements are
. . . . 1 BAC
accurate enough to eliminate ties. What is the girl’s BCA
probability of winning? CAB
Argument 1: The girl has two marbles to roll, CBA
against the boy's one, therefore her probability of
winning is 2/3. In four of the six cases the girl wins. This confirms
Argument 2: Call the girl’s marbles A and B, the original argument that her chances are 4/6 =
and the boy’s marble C. There are four possible 2/3.
results:

1. Both A and B are closer to the stake than C.
2. Only A is nearer than C.
3. Only B is nearer than C.
4. C is nearer than A and B.
In three of the four cases the girl wins, therefore
her winning chances are 3/4.
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The Elevator Paradox
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People who ride elevators
are often puzzed by
another strange probability
paradox. We’ll assume that
elevators in this building
move independently and
average the same waiting
time on each floor.

\_MR.High

\

% Y E §

N

Migs Low )

Mr. High has an office on a
floor near the top. He’s very
annoyed.

Mr. High: Confound it!
The first elevator to stop
here is going up. It happens
all the time.

Mr. High: Maybe they're
making elevators in the
basement and taking them
off the roof in helicopters,

Miss Low works on a floor
near the bottom. Every day
she eats lunch in a restau-
rant on the top floor. She,
too, is annoyed.

Miss Low: I can’t under-
stand it. Whenever [ want
an elevator, the first one to
arrive is usually going
down.

Miss Low: They must be
bringing elevators to the
roof, then sending them
down to be stored in the
basement.

A simple diagram clears up
the mystery. For Mr. High,
only elevators in the dark
region of their shafts are
going down. This region is
small compared to the light
region, so the probability is
much higher that an eleva-
tor is below his floor and
coming up. The same argu-
ment works in reverse for
Miss L.ow



The elevator paradox first appeared in the book
Puzzle-Math by the physicist George Gamow and
his friend Marvin Stern. In explaining the paradox
with one elevator, Gamow and Stern made a
small mistake. They stated that the probabilities
“of course remain the same” if there are two or
more elevators. ~

Donald Knuth, a Stanford University computer
scientist, was the first to realize that this is not true.
Wiriting on “The Gamow—Stern Elevator Problem”
in The Joumnal of Recreational Mathematics (July
1969), Knuth showed that as the number of
elevators increases, the probability that the first
elevator to stop on any floor is going up
approaches 1/2, and the probability it is going
down also approaches 1/2.

This situation, in a way, is even more
paradoxical than before. It means that if you wait
on a floor near the top and fix your attention on
any given elevator door, the probability is always
high that the next time that elevator arrives it will
be going up. But the chance that the next elevator
to stop on the floor will be going up, regardless of
the shaft it is in, is a different matter. This
probability approaches 1/2 as the number of
elevators approaches infinity. The same is true of
down elevators stopping on a floor near the
bottom.

We assume, of course, that elevators travel
independently of one another, with constant
speeds, and have the same average waiting time
on each floor. If there are just a few elevators, the
changes in probability are slight, but if there are
20 or more, the probability gets very close to 1/2
for all floors except the top and bottom ones.
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The Bewildered Girlfriends

NexT Train
EasThbound lestbound
12:00 12:01
12,10 1211
12:20 12.: 21
\.
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Have you heard about the
boy who never could
decide which girlfriend to
visit? One gitl lived east, the
other west. Each day he
went to his subway station
at random times and took
the first train.

Both eastbound and west-
bound trains ran at 10-min-
ute intervals.

One night the east girl said:
Easty: 'm so happy

you're able to visit me nine
out of ten days on the aver-

age.

Another night the west girl
got very angry.

Westy: Why is it that | see
you only about once every
ten days?

hext Train
_Eostbound | _Westbound
12.:00 1201
2210 12:11
i2:20 i2:2!
13:30 1231
i2.40 12.41
12.50 12:51

This curious state of affairs
is like that of the elevators.
Although all trains run at
10-minute intervals, the
schedule is such that a
westbound train always
arrives and leaves 1 minute
after an eastbound train.

To catch a westbound train,
the boy must arrive during
one of the 1-minute inter-
vals shaded on the clock.
To catch an eastbound train
he must arrive during one
of the 9-minute intervals
shown in white. The proba-
bility of going west is one-
tenth, and the probability of
going east is nine-tenths.



In this paradox the waiting times between trains
are fixed by the schedule. In a sequence of
random events, the “average waiting time”
between events is obtained by adding n waiting
times and dividing by n. For example, the boy’s
average waiting time for an eastbound train is 42
minutes, and his average waiting time for a
westbound train is half a minute.

Many other paradoxes involve waiting times.
You may enjoy tackling this one. In flipping a coin,
the average waiting time for a head (or a tail) is
two flips. This means that if you take a long list of
coin flips and count the waiting times from each
head to the next, the average “run” between
heads (not counting the first head, but including
the next one) is two flips.

Suppose you have a long vertical list of the
outcome of many penny flips. Randomly select a
spot between any two adjacent flips (perhaps by
closing your eyes and drawing a horizontal line
across the list). Find the nearest head above the
line and the nearest head below, then count the
run from one head to the other. If you do this
many times, what will be the average run between
heads?

Intuitively, the answer seems to be two flips.
Actually it is three. The reason is the same as the
reason why the boy usually catches the eastbound
train. Some runs between heads will be short, and
some long. Your randomly drawn line is like the
boy who arrives on the subway platform at
random times. It is more likely to strike inside a
long run than a short one.

Here is a simple proof that the correct answer is
three flips. Pennies have no memories of past
behavior, so wherever you draw the line, the
average waiting time to the next head must be
two. The same applies to the average waiting time
if we “time reverse” the process and count
backward. Consequently, the average run between
heads is twice 2, or 4, if both heads are counted.
Since we have defined a run as including one
head but not the other, the length of the run is
4-1=23.

The comparable problem with a roulette wheel
is even more startling. A roulette wheel has 38
numbers including 0 and 00. Thus the average
waiting time for a given number, say 7, is 38
spins. But if you take a long list of roulette results,
and pick a spot on it at random, the average run
that it selects, from one 7 to the next, is not 38 but
(2 x38) -1 =75
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Three-Shell Game
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Operator: Step right up,
folks. See if you can guess
which shell the pea is
under. Double your money
if you win.

After playing the game a
while, Mr. Mark decided he
couldn’t win more than
once out of three.

Operator: Don't leave,
Mac. I'll give you a break.
Pick any shell. Fll turmn over
an empty one. Then the
pea has to be under one of
the other two, so your
chances of winning go way

up.

Poor Mr. Mark went broke
fast. He didn't realize that
turning an empty shell had
no effect on his chances.
Do you see why?

After Mr. Mark has selected a shell, at least one of
the remaining two shells is certain to be empty.
Since the operator knows where he put the pea,
he can always tum over an empty shell. Therefore
his act of doing so adds no useful information for
Mr. Mark to revise his estimate of the probability
that he has picked the right shell.

You can demonstrate this with an ace of spades
and the two red aces. Mix the cards and deal
them face down in a row. Allow someone to put a
finger on a card. What is the probability he or she
has picked the ace of spades? Clearly it is 1/3.

Suppose, now, you peek at your two cards and
turn over a red ace. You can argue, like the shell
game operator, as follows. Only two cards are face
down. The ace of spades is as likely to be one of
them as the other. Therefore the probability that
the ace of spades has been picked seems to have
gone up to 1/2. Actually, it remains 1/3. Because
you can always turn over a red ace, turning it adds
no new information that affects the probability.

You can puzzle your friends with the following
variation. Instead of peeking at the two unselected
cards to make sure you turn a red ace, allow the
person whose finger is on a card to turn over one
of them. If it should be the ace of spades, the deal
is declared void and the game is repeated until the
reversed card is a red ace. Does this procedure
raise the probability of picking the ace of spades?

Oddly enough, it raises it to 1/2. We can see
why by taking a sample case. Call the positions of
the cards 1,2,3. Let’s assume the person puts a
finger on card 2, then turns over card 3 and it is a
red ace.



There are six equally possible ways the six cards
can be dealt:

1.A8 AQ AO
2.A8 AO AQ
3.A0 AS AQ
4.A0 AQ AS
5.A0 AM A
6.A0 AO AW

If the third card (reversed) had been the ace of
spades, the deal would have been declared void,
therefore cases 4 and 6 never enter into the
problem. We rule them out as possible cases. Of
the remaining four (1,2,3,5), card 2 (on which the
finger rests) is the ace of spades in two cases.
Therefore the probability card 2 is the ace of
spades is indeed 2/4 = 1/2.

The result is the same regardless of which card
the person chooses, and which card is exposed as
the red ace. Had Mr. Mark been allowed to pick
the shell to be turned over, and had it been
empty, his chances of being right would have
gone from 1/3 to 1/2.
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Chuck-A-Luck
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The next time you go to a
camival, stay away from
chuck-a-luck! Many people
are tricked into playing it
because they think they
can't lose.

The chuck-a-luck cage con-
tains three dice, which are
shaken by turning the cage.
A player bets on any num-
ber from 1 to 6 and is paid
whatever he bets for each
die that shows his number.
Players often reason:

Mr. Mark: If the game
had one die, my number
would show once in six
games. If it had two dice, it
would show in two out of
six games. With three dice,
it must show in three out of
six games, and that’s even

odds!

Mr. Mark: But my odds
are better than that! If [ bet
a dollar on, say, 5, and 5
shows on two dice, 1 win
$2. If it shows on all three, 1
win $3. The game must be
in my favor!

(

With customers thinking this
way, it's no wonder casino
operators become million-
aires! Why does chuck-a-
luck give the house a strong
percentage?



Chuck-a-luck is played in many casinos
throughout the United States and abroad. In
England, back in the early 1800s, it was called
Sweat-cloth. In more recent times it has been
known as Bird Cage. In British and Australian
pubs it is usually played with three dice, each
carrying symbols of a spade, a diamond, a heart,
a club, a crown, and an anchor, and is called
Crown and Anchor.

At carnivals, the operator often shouts as a
come-on, “Three winners and three losers every
time!” This gives the strong impression of a fair
game. The game actually would be fair if the dice
always showed three different numbers. After each
turn of the cage, the operator would collect $3
from the three losers (assuming bets of a dollar
each), and pay out $3 to the three winners.
Fortunately for the operator, the same number
often shows on two or three dice. If it shows on
two dice, he takes in $4 and pays out $3, making
$1 profit. If it shows on all three dice, he takes in
$5 and pays out $3, making a profit of $2. These
doublets and triplets provide the house its
percentage.

Calculating the house percentage by formulas is
a tricky business. The safest way is to make a full
listing of the 216 ways three dice can fall. You will
find that only 120 of them show all three dice
different, 90 show doublets, and 6 show all three
dice alike. Assume that the game is played 216
times, with the 216 possible outcomes. For each
game six people each bet a dollar on each of the
six numbers. The operator will collect a total of

216 x $6 = $1296 in bets.

When all three dice are different, he pays back
a total of 120 x $6 = $720. When doublets
show he pays out a total of 90 x $2 = $180 for
the singlet, and 90 x $3 = $270 for the
doublets. When triplets show he pays out 6 x $4
= $24. This is a total payoff of $1194, giving him
a profit of $102. Dividing $102 by $1296 gives
the house percentage of 7.8 + percent. This
means that for every dollar a player wagers, he
can expect in the long run to lose about 7.8 cents.

What are the chances of winning on a single
throw? If the three dice are colored red, green,
and blue, there are 36 ways the red die can show
a 1 while the other dice come up as they please.
Continuing our count there are 30 ways the red
die can show something other than 1, while the
green die shows a 1 and the blue die comes up as
it pleases. Finally, if the blue die shows a 1 and
the red and green dice can show anything except
a 1, there are 25 cases. Thus, in 91 cases out of
216 at least one die shows a 1. So the probability
of winning on 1 is 91/216, or considerably less
than 1/2, and the same is true for any other
number.
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Puzzling Parrots

A lady owned two parrots.
One day a visitor asked:
Visitor: Is one bird a
male?

Owner: Yes.

What is the probability both
birds are males? It’s one-
third.

Suppose the visitor asks:
Visitor: Is the dark bird a
male?

Owner: Yes.

Now the probability both
birds are males goes up to
one-half. This doesn’t make
sense. Why does asking
about the dark bird change
the probability?

This paradox can easily be
explained by listing all the
possible cases. When the
visitor knows that one bird
is a male, there are just three
cases to consider. Only one
is male—male, so the prob-
ability that both are males is
one-third. (We assume
equal likelihood that each
parrot is male or female.)

But when the visitor knows
that the dark bird is male,
there are now just two cases
to consider. Only one is
male—male, so the probabil-
ity both are male is one-
half.
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You can model the parrot problem by having
someone toss two coins, one a penny, the other a
nickel, then make certain statements about the
result. The tosser can adopt one of several
procedures:

1. If both coins are heads he says: “At least one
coin is a head.” If both are tails, he says: “At least
one coin is a tail.” If the coins are different, he
says: “At least one coin is a ---,” picking heads or
tails at random. What is the probability that both
coins show whatever side was called? Answer: 1/2.

2. The tosser has agreed in advance to call out
“At least one coin is heads” only when this is the
case. If no coin is heads, he says nothing and
tosses again. What is the probability both coins are
heads? Answer: 1/3 (because now the possibility
of tails—tails is eliminated.)

3. The tosser agrees in advance to call out how
the penny fell, regardless of whether it is heads or
tails. What is the probability that the coins match?
Answer: 1/2.

4. The tosser agrees in advance to call out “At
least one coin is heads” only when the penny is
heads. What is the probability both are heads?
Answer: 1/2.

The parrot paradox is sometimes given in such
an ambiguous way that it is not possible to answer
it. For example, suppose you meet a stranger who
says. “I have two children. At least one is a boy.”
What is the probability both children are boys?



This is not a precisely defined problem because
you know nothing about the circumstances that
prompted the man to make his statement. He
might just as likely have said “At least one is a
girl,” picking the sex at random if his children are
different sexes, and naming the sex if both are the
same. If that was his procedure, the probability of
both being boys is 1/2. The situation corresponds
to No. 1 above.

In our parrot problem, ambiguity is eliminated
by having the customer ask the question. The first
question, “Is at least one bird a male?”
corresponds to No. 2 above. The second
question, “Is the dark bird a male?” corresponds
to No. 4.

An even more astounding paradox, closely
related to the two parrots, is known as the
paradox of the second ace. Assume you are
playing bridge. After the cards are dealt you look
over your hand and announce: “I have an ace.”
What is the probability you have a second ace? It
is exactly 5359/14498, which is less than 1/2.

Suppose now, that all of you agree on a
particular ace, say the ace of spades. The play
continues until you are dealt a hand that enables
you to declare: “I have the ace of spades.” What is
the probability you have a second ace? It is now
11686/20825, or slightly better than 1/2! Why
should naming the ace alter the odds?

The computation of chances for the entire deck
is long and tedious, but the structure of the
paradox can be understood easily by reducing the
deck to four cards, say the ace of spades, ace of
hearts, two of clubs, and jack of diamonds.

(Simplifying a problem by reducing its number of
elements is often an excellent way to understand
its structure.) The four-card deck is shuffled and
dealt to two players. There are six equally
probable two-card hands:

A AQ
Ad JO
A 28
AQ JO
AQO 28
JO 2@

Five of the six hands permit a player to say “I
have an ace,” but in only one of the five hands is
there a second ace. Consequently the probability
of the second ace is 1/5.

There are just three hands that permit the player
to declare “I have the ace of spades.” Only one of
the three has a second ace. Therefore the
probability of the second ace is 1/3.

Note that the ace to be named must be agreed
upon in advance, as well as the person who, in
each case, makes the announcement that he or
she holds an ace. If these assumptions are not
explicitly made, the problem is not precisely
defined.
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The Wallet Game

Professor Smith is having
lunch with two math stu-
dents.

Professor Smith: Let me
show you a new game. Put
your wallets on the table.
We'll count the money in
each. Whoever has the
smallest amount wins all the
money in the other wallet.

Joe: Hmm. If | have more
than Jill, she’ll win just what
1 have. But if she has more,
I'll win more than I have.
So I'll win more than I can
lose. The game must be in
my favor.

Jill: If [ have more than
Joe, he'll win just what 1
have. But if he has more,
I'll win, and I'll win more
than 1 have. The game’s in
my favor.

.. /

"~ ~\ How can a game be favora-
ble to both players? It can’t.
Does this paradox arise

because each player
wrongly assumes his
chances of winning or los-
ing are equal?
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This charming paradox comes from the French
mathematician Maurice Kraitchik. In his book
Mathematical Recreations he gives it with neckties
instead of wallets:

Each of two persons claims to have the finer
necktie, They call in a third person who must
make a decision. The winner must give his
necktie to the loser as consolation. Each of the
contestants reasons as follows: “I know what my
tie is worth. I may lose it, but | may also win a
better one, so the game is to my advantage.”
How can the game be to the advantage of both?

If we define the situation precisely by making
certain assumptions, it is a fair game. Of course, if
we have information that one player habitually
carries less money (or wears a cheaper necktie)
than the other, then we know it is not a fair game.
If no such information is available, we may
assume that each player has a random amount of
money from zero to any specified amount, say
$100. If we construct a payoff matrix on this
assumption, as Kraitchik does in his book, we see
that the game is “symmeitrical” and does not favor
either player.

Unfortunately, this does not tell us what is
wrong with the reasoning of the two players. We
have been unable to find a way to make this clear
in any simple manner. Kraitchik is no help, and so
far as we know, there is no other reference on the

game.



The Principle of Indifference

Is there life on Titan, the
largest moon of Saturn?

Will there be an atomic
war?

If you answer questions like
these by saying that yes and
no are equally probable,
you are foolishly applying
what is called the “principle
of indifference.” Careless
use of this principle has
caught many mathemati-

V| cians, scientists, and even
/ great philosophers in webs
of absurdity.

P orinciple of
Indifference
Prison

The “principle of insufficient reason,” which the
economist John Maynard Keynes renamed the
“principle of indifference” in his famous Treatise
on Probability, can be stated as follows: If we have
no good reasons for supposing something to be
true or false, we assign even odds to the
probability of each truth value.

The principle has had a long and notorious
history, with applications in such diverse fields as
science, ethics, statistics, economics, philosophy,
and psychic research. If not properly used, it leads
to absurd paradoxes and outright logical
contradictions. The French astronomer and
mathematician Laplace once used the principle as
a basis for calculating that the probability of the
sun rising tomorrow is 1,826,214 to 1!

Let’s see how contradictions arise if the principle
is carelessly applied to our questions about Titan
and atomic war. What is the probability there is
some form of life on Titan? We apply the principle
of indifference and answer 1/2, What is the
probability of no simple plant life on Titan? Again,
we answer 1/2. Of no one-celled animal life?
Again, 1/2. What is the probability there is neither
simple plant life nor simple animal life on Titan?
By the laws of probability we must multiply 1/2 by
1/2 and answer 1/4. This means that the
probability of some form of life on Titan has now
risen to 1 — 1/4 = 3/4, contradicting our former
estimate of 1/2.

What is the probability of an atomic war before
the year 2000? By the principle of indifference we
reply 1/2. What is the probability of no atom
bomb dropped on the United States? Answer: 1/2.
Of no atom bomb on Russia? Answer: 1/2. Of no
atom bomb on France? Answer: 1/2. If we apply
this reasoning to ten different countries, the
probability of no atom bomb falling on any of
them is the tenth power of 1/2, or 1/1024.
Subtracting this from 1 gives us the probability
that an atom bomb will fall on one of the ten
countries—a probability of 1023/1024.



In both of the above examples the principle of
indifference is aided by an additional assumption
in vielding such absurd results. We have tacitly
assumed the independence of events that clearly
are not independent. In light of the theory of
evolution, the probability of intelligent life on
Titan is dependent on the existence there of lower
forms of life. Given the world situation as it is, the
probability of an atom bomb falling on, say, the
United States is not independent of the probability
of such a bomb falling on Russia.

Another good example of careless use of the
principle of indifference is the paradox of the
unknown cube. Suppose you are told that a cube,
hidden in a closet, has a side that is between 2
and 4 feet. You have no reason to assume the side
is less than 3 or more than 3, so your best guess
of the cube’s side is 3. Now consider the cube’s
volume. It must be between 23 = 8 and 4® = 64
cubic feet. You have no reason to think the
volume is less than 36 or more than 36, so you
guess the volume to be 36 cubic feet. In other
words, your best estimate is a cube with a side of
3 and a volume of 36, which would be a queer
sort of cube! Put another way, if you apply the
principle of indifference to the cube’s side, you get
a cube of side 3 and volume 27. Apply it to the
volume, and you get a cube of volume 36 and a
side equal to the cube root of 36, or about 3.30
feet.

The cube paradox is a good model for showing
the kind of trouble a scientist or statistician can get
into when he or she obtains minimum and
maximum values for a quantity, then assumes that
the actual value is most likely to be halfway
between, Many other examples of such paradoxes
are given in Keynes' book.
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The principle has legitimate applications in
probability, but only when the symmetries of a
situation provide objective grounds for assuming
probabilities to be equal. For example, a penny is
geometrically symmetrical in the sense that you
can pass a plane of symmetry edgewise through
the coin. It is physically symmetrical in having a
uniform density; that is, it is not weighted on one
side. The forces that act upon it in the air—gravity,
friction, air pressure, and so on—are symmetrical,
not favoring one side over the other. We are
justified, therefore, in assuming that heads and
tails have equal probability. Similar symmetries
apply to the six sides of a cubical die, or the 38
slots of a roulette wheel. In each of these cases
extensive experiments in gambling casinos around
the world have shown the correctness and the
limitations of these symmetry assumptions. In
cases where such symmetries are not known, or
may not even exist, an application of the principle
of indifference often leads to absurd results.



Pascal’s Wager

Blaise Pascal, a famous sev-
enteenth century French
mathematician, applied the
principle of indifference to

Christian faith.

Pascal: A person cannot
decide whether to accept or
reject the doctrines of the
church. They may be true.
They may be faise. It is like
the flip of a coin, The odds
are even. But what are the
payoffs?

Pascal: Suppose you
reject the church, If the
church is false, you lose
nothing. But if the church is
true, you face infinite suffer-
ing in hell.

Pascal: Suppose you
accept the church. If the
church is false, you gain
nothing, But if it is true, you
win eternal bliss in heaven.

Pascal was sure that the
payoffs of this decision
game are infinitely in favor
of a bet that the church is
true. Philosophers have
been debating Pascal’s
wager ever since. What's
your opinion?

Blaise Pascal was one of the founders of
probability theory. In the first picture he is pointing
to a famous pattern of numbers called “Pascal’s
triangle.” Pascal did not invent the triangle (it goes
back to the early Middle Ages), but he was the
first to make a thorough investigation of it. The
pattern has elegant combinatorial properties that
make it a useful tool in answering elementary
problems in probability. {See the chapter on
Pascal’s triangle in Harold Jacobs, Mathematics: A
Human Endeavor.)

Pascal's argument for becoming a Christian, or
“Pascal’s wager” as it is usually called, is given in
Thought 233 of his Pensees. The wager suggests
many provocative questions. For instance:

1. Is the principle of indifference legitimately
applied in Pascal’s argument?

2. How would you answer this objection by the
French philosopher Denis Diderot? There are
many other great religions, such as Islam, that also
make salvation conditional on acceptance of the
religion. Does Pascal’s wager apply to all of them?
If so, should one become a member of each?

3. What do you think of William James’
watered-down version of the wager? In his essay
“The Will to Believe,” James argued that a
decision to believe in God (James was not
concerned with an afterlife or a particular church)
is a good bet because there is no evidence one
way or another concerning God’s existence,
therefore one should make whatever decision
makes him the happiest throughout his life.

4. What do you think of this argument by
H. G. Wells? We do not know whether the world
will or will not survive an atomic holocaust. But
you should live and behave as if you are sure it
will survive because, as Wells put it, “if at the end
your cheerfulness is not justified, at any rate you
will have been cheerful.”
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5 Statistics
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Paradoxes about gismos, clumps, ravens, and grue
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Statistics—which concemns the obtaining,
organizing, and analyzing of numerical
information—is increasingly important in today’s
highly complex world. Average citizens are so
bombarded by data, from the state of the
economy to the effectiveness of brands of
toothpaste, that unless they have some knowledge
of elementary statistics they are incapable of
making intelligent decisions. It would be hard to
find a science in which statistical studies do not
play vital roles, not to mention the indispensability
of statistics in dozens of other fields—insurance,
public health, advertising—and almost every type
of business.

In no sense is this chapter an introduction to
statistics. Taken alone, it will not teach you the
basics of the field. What it does try to do is offer a
sampling of colorful paradoxes that will stimulate
your interest in learning more about the
underlying mathematics.

The chapter opens with a story that introduces
those three farnous fundamental measures: the
mean, the median, and the mode. This is followed
by some outlandish examples of the misuse of
data—the great art of “lying” with statistics—that
will alert you to some common pitfalls.

Faced with today’s explosion of interest in
astrology and all things paranormal, few people
are aware of how a lack of statistical sophistication
makes it easy for them to be impressed by
surprising coincidences, which in the light of
probability theory and statistics are not at all
surprising.

Consider, for example, the notorious birthday
paradox. Among any randomly selected group of
23 people, the chances are slightly better than 1/2
that at least two will have birthdates of the same
month and day! If there are 40 people the
chances of such a coincidence rise to about 9/10.

One’s first reaction is total disbelief. Next, one
makes an empirical test at a party of some 40
guests, or by checking 40 names at random in a
Who's Who. The third step, if you have any
curiosity about the mathematics behind this
paradox, is to learn enough about it to understand
why things turn out this way. It is in just this way
that these paradoxes provide marvelous stepping
stones to significant mathematics.

Instructions are given for some card tricks in
which seemingly miraculous coincidences are the
natural outcome of simple mathematical laws. The
voting paradox is one of the most famous of many
strongly counterintuitive theorems studied in
decision theory, a new branch of mathematics
concerned with making rational decisions on the
basis of statistical information. A story about Miss
Lonelyhearts dramatizes another astonishing, little-
known paradox.

The chapter concludes with two of the most
widely debated paradoxes in the philosophy of
science: the notorious paradox of the raven and a
paradox about a strange property called “grue.”
Both point up the importance of statistics in
evaluating the degree of credibility of scientific
hypotheses.
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The Deceptive “Average”
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Gismo Products has a small
factory where supergismos
are manufactured.

The management consists
of Mr. Gismo, his brother,
and six relatives. The work
force consists of five fore-
men and ten workers. Busi-
ness is good, and the fac-
tory needs a new worker,

Mr, Gismo is interviewing
Sam for the job.

Mr. Gismo: We pay very
well here. The average sal-
ary is $600 a week. During
your training period you'll
get $150 a week, but that
will soon increase.

After working a few days,
Sam asked to see the boss.
Sam: You misled me! I've
checked with the other
workers and not one is get-
ting more than $200 a
week, How can the average
salary be $600 a week?

Mr. Gismo: Now, Sam,
don't get excited. The aver-
age salary is $600. I'll prove
it to you,
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Mr. Gismo: Here's what
we pay out each week. I get
$4800, my brother gets
$2000, my six relatives
each make $500, the five
foremen each make $400,
and the ten workers each
get $200. That makes a
weekly total of $13,800 for
23 people, right?

Sam: Okay, okay. You're
right. The average is $600 a
week. But you stiff misled
me.

Mr. Gismeo: [ disagree.
You just didn’t understand. |
could have listed the sala-
ries in order and told you
that the middie salary is
$400, but that isn’t the
average. It's the median.

Sam: Where does the
$200 a week come in?

Mr. Gismo: That's called
the mode. It’s the salary tha
most people are making,

Mr. Gismo: The trouble
with you, my boy, is that
you don’t know the ditfer-
ence between average,
median, and mode.
Sam: Well, [ know now.
And ... [quit!



Statistical statements can be extremely paradoxical
and at times downright deceptive. The story about
Mr. Gismo’s factory brings out a common source
of misunderstanding about the differences
between the mean, the median, and the mode.

The word average is usually an abbreviation for
“arithmetic mean.” It is a valuable statistical
measure. If, however, there are a few extreme
values, such as the high salaries of the top two
men in Mr. Gismo’s factory, the “average” salary
can convey a false impression.

It is easy to find similar situations in which a
statement about the “average” is equally
misleading. For example, a newspaper reports that
a man has drowned in a river that has an average
depth of only 2 feet. Is this surprising? Not when
you learn that he drowned in one of the few
spots where the depth is more than 10 feet.

A corporation may report that its policies are
democratically controlled by stockholders because
its fifty stockholders have altogether 600 votes, or
an average of 12 votes per person. If, however,
forty-five stockholders have only 4 votes each,
and five persons have 84 votes each, the average
is still 12 votes per person, but five people have
complete control of the corporation.

One more example: To attract retail businesses,
the Chamber of Commerce boasts that the town’s
average per capita income is very high. Most
people would take this to imply that a majority of
the town’s citizens are in high-income brackets.
But if one billionaire happens to live in the town,
the other residents could all have low incomes and
the “average” per capita income would still be
high.

The reporting of statistics is made even more
confusing by the fact that the word average is
sometimes used, not for an arithmetic mean, but
for the median or the mode. The median is the
value in the middle of a list of values arranged in
order of magnitude. If there is an odd number of
items on the list, the median is simply the middle
value. If there is an even number, the median is
customarily taken as the arithmetic mean of the
two values in the middle.

The median is a more useful measure to Sam
than the arithmetic mean, but even the median
gives a distorted picture of the firm’s salaries. What
Sam really needed to know was the mode—the
value that appears most often on a list. In this
case, the mode is the salary paid to more people
in the firm than any other salary. It is sometimes
called the “typical case” because it occurs more
often than any other. In our last example, a
“typical” family in a town—one that represents
the income mode—may be very poor, even
though the town’s average income, due to a small
number of very wealthy people, is very high.
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Mother of the Year

Later in the year Sam’s wife
received an award from the
town's mayor. She had
been named the mother of
the year.

The local paper ran a pic-
ture of Sam, his wife, and
their 13 children.

The editor was pleased with
the photograph.

Editor: Good work, Bas-
com. | have a new assign-
ment. Get me a picture of
the average-sized family in
this town.

Bascom was unable to do
this, Why? Because not a
single family in town was
average! The computed
average number of children
was 25,
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Another common misconception about an
“average” is that actual instances of the average
must exist. After seeing this episode, in which we
learn that there is no average family of 2%
children, you should have no difficulty thinking of
other instances in which the average value is not
represented by any individual case. Can you, for
example, toss a die and obtain the average
number of spots a tossed die shows in the long
run?

Here are some other questions to ask yourself
to sharpen your understanding of the arithmetic
mean, median, and mode.

1. If the editor wants a photograph of a
“typical” family, in the sense of the mode, can the
photographer always find such a family? (Yes, the
typical case obviously exists).

2. Is it possible that there is more than one
mode? For example, could a family of two
children and a family of three children each be
examples of a mode? (Yes, if the town had 1,476
families with two children, and 1,476 families with
three children, and all other families had more or
less children, then the town would have two types
of families, each a legitimate mode.)

3. If the editor wants a photograph of a median
family, can he always find one? (Usually, but not
always. As we saw above, if there is an even
number of families in a town, and the two middle
families are not alike in the number of children,
then the median need not be an integer.)



Jumping to Conclusions
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Statistics show that most car
accidents occur when cars
travel at moderate speeds,
and that very few accidents
occur at speeds of more
than 150 kilometers per
hour. Does this mean it is
safer to drive at higher
speeds?

Not at all. Statistical rela-
tionships often have noth-
ing to do with cause and
effect. Most people drive at
moderate speeds, so natu-
rally most accidents occur at
moderate speeds.

If statistics showed that
more people died of tuber-
culosis in Arizona than in
any other state, would that
mean that Arizona’s climate
favored getting TB?

Quite the contrary,
Arizona’s climate is so help-
ful to TB victims that thou-
sands of them go there.
Naturally this would raise
the average number of TB
deaths,

@’271\

A research study showed
that children with big feet
could spell better than
those with small feet. Does
this mean that the size of
one’s foot is a measure of
one’s ability to spell?

It does not. The study
included growing children.
All it showed was that older
children, who, of course,
have bigger feet, spell better
than younger ones.
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These three episodes underscore the importance
of not jumping to conclusions about cause and
effect when you hear of a statistical correlation.
Here are a few more instances:

1. It is often said that most car accidents occur
near the home. Does this mean that travel on
highways, many miles from home, is safer than
driving around town? No. The statistics simply
reflect the fact that a car is more often driven near
one’s home than on distant highways.

2. A study showed that a certain state ranked
high both in the proportion of people who drink
milk and in the proportion of people who die of
cancer. Does this indicate that drinking milk causes
cancer? No. The state also ranked high in the
proportion of people who are elderly. Since
cancer is commonly an affliction of the aged, this
is what raised the proportion of cancer deaths.

3. A study showed that in a certain city there
was a sharp rise both in deaths from heart failure
and in the consumption of beer. Could it be that
beer drinking increases the probability of a heart
attack? No. The increase in both cases was the
result of a rapid rise in population. By the same
reasoning, heart attacks could be attributed to
hundreds of other things: increased consumption
of coffee, increased chewing of gum, increased
playing of bridge, increased television watching.

4. A study showed that at the same time a
certain European city had a large increase in
population, there was a large increase in the
number of stork nests in the city. Does this support
the belief that storks bring babies? No, it reflected
the fact that as the number of buildings increased,
there were more places in the city where storks
could nest.
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5. A recent study showed that most great
mathematicians were eldest sons. Does this mean
that first-born sons are more likely to have
mathematical ability than sons born later? No, it
simply reflects the surprising fact that most sons
are eldest sons.

The last example suggests some interesting
experiments. Survey your male friends to see if
more than half are eldest sons. Do the same with
your female friends to see what proportion are
eldest daughters.

Or a thought experiment. Consider a
population in which 100 families each have two
children. What fraction of the boys (or gitls} will
be eldest sons (or daughters)? (Answer: 3/4).
Compute the fraction in a population of 100
families, each with three children. (Answer: 7/12.)
It goes without saying that in families of only one
child, that child will be the eldest.

The exact percentage of eldest children of one
sex obviously will vary with the sizes of families in
the population under consideration, but for all
populations it is over 1/2 and for most populations
the figure is well over 1/2.

These examples may stimulate you to look for
other instances of statistical statements that are
easily misinterpreted with respect to cause and
effect. Modern advertising, especially television
commercials, is a rich source of such misleading
assertions.



The Small-World Paradox

Many people these days
believe that coincidences
are caused by stars or other
occult forces.

For example, suppose two
strangers meet on an air-
plane.

Jim: So you're from
Boston! My old friend Lucy
Jones is an attomney there.

- | Tom: What a small world!
"’| She’s my wife’s best friend!

Is this sort of thing an
unlikely coincidence? Statis-
ticlans have proved it is not.

Most people are very surprised when they meet a
stranger, especially if far from home, and discover
that they have a friend in common, A group of
social scientists at MIT, led by Ithiel de Sola Pool,
made a study of this “small-world paradox.” They
found that if two people in the United States are
selected at random, on the average each person
will know about 1000 people. This gives a
probability of about 1 in 100,000 that they will
know each other. The probability rises sharply to
about 1 in 100 that they have one friend in
common. The probability that they are connected
by a chain of two intermediates (as in the dialog
at left) is actually better than 99 in 100! In other
words, if Brown and Smith are two persons in the
United States picked at random, the chances are
almost certain that Brown will know someone who
knows someone who knows Smith,

Psychologist Stanley Milgram approached the
small-world problem by selecting a random group
of “starting persons.” Each was given a document
to transmit to a “target person” (unknown to the
starting person) who lived in a distant state. This
was to be done by mailing the document to a
friend (someone known on a first-name basis)
who seemed most likely to know the target
person, and the friend in turn would mail it to
another friend, until finally it reached someone
who knew the target person. Milgram found that
the number of intermediate links, before the docu-
ment reached the target person, varied from 2 to 10,
with the median at 5. When people were asked
how many intermediate links would probably
be necessary, most of them guessed about 100.

Milgram’s study shows how tightly people are
joined by a network of mutual friends. Thus, it is
not surprising that two strangers, meeting far from
home, will have a mutual acquaintance. The
network also explains other unusual statistical
phenomena, such as the speed with which gossip,
sensational news, confidential information, and
jokes are transmitted.



What’s Your Sign?

s "\ These four people are
meeting for the first time,
Would it be a remarkable
coincidence if at least two
have the same astrological
sign?
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You might think so, but actually it will happen
about four times out of ten. Assume that each of
the four people could have been born, with equal
probability, under any 1 of the 12 signs of the
zodiac. What is the probability that at least two of
the people will have the same sign?

Let's model the problem with a deck of cards.
Remove all the kings. The deck will then consist of
12 values for each of the four suits. Let each suit
represent a person, and each value represent a
zodiac sign. If we select at random a card from
each suit, what is the probability that at least two
cards will match in value? This will be the same as
the probability that at least two of the four
strangers will have identical astrological signs.

The simplest way to solve this problem is to
calculate the probability that no two card values
are alike. Subtracting this from 1 will give the
probability we seek.

If we consider two suits, say hearts and spades,
the probability of no match is 11/12 because there
is only one chance in 12 that a heart and a spade
will have the same value. The probability that a
club will differ in value from the other two cards is
10/12, and the probability that a diamond will
differ from the other three cards is 9/12. The
product of these three fractions gives us the
probability that none of the four cards match. It is
55/96. Subtracting this from 1 gives 41/96, or a
probability of about 4/10 that at least two of the
four persons will have the same sign. This is
almost 1/2, so such a coincidence is not surprising.



This is a variation of the well-known birthdate
paradox. If 23 people meet at random, the
probability is a trifle better than 1/2 that at least
two will be born on the same day of the same
month. The calculation proceeds as before, except
that now we have 22 fractions to be multiplied:

364 363 362 . 343
365~ 365~ 365 365

The probability is 1 minus the product, or
0.5073 +, a trifle better than 1/2. Confirming this
figure is easy with a pocket calculator. The
probability of a matching birthdate rises rapidly if
there are more than 23 persons. Among 30
people the probability is about 7/10 that at least
two will have identical birthdates. Among 100
persons the odds are higher than 3 million to 1.

Some questions you might think about:

1. How many presidents of the United States
have the same birthdate? How many have the
same date of death? How do these results
compare with theoretical expectation?

2. What is the smallest number of people for
whom the probability is better than 1/2 that at
least two are born in the same month? (Answer: 5.
The probability of a match is 89/144 or about
0.62.)

3. What is the smallest number of people for
whom the probability is better than 1/2 that at
least two are born on the same day of the week?
(Answer: 4. The probability of a match is 223/343
or about 0.65.)

4. What is the smallest number of people for
whom the probability is better than 1/2 that at
least one of them has the same birthdate as
yours? (Answer: 253. It is not 183, as it would be
if everyone had a birthdate unlike anyone else.)
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Patterns in Pi
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The digits of r seem

~1 random, but look what

happens starting at the

710,100th decimal digt.

Seven 3’s in a row!

The digits of 7 are not random in the sense of
being randomly generated, but they are “random”
in the sense that they are patternless.
Mathematicians have subjected the decimal
expansion of 1 to all sorts of tests to discover any
“order” in the digits, but without success. In this
sense 1 is as disordered as digits obtained by a
spinner that can stop at any digit from 0 to 9.

The actual odds against a run of seven 3’s in 1,
starting at any given random spot in its decimal
expansion, are high. The odds are 9,999,995 to 1
against such a run. Therefore, that this run occurs
in the first 710,106 decimal digits of = may at first
seem surprising. But if we are searching = for any
sort of unusual pattern of 7 digits, the probability
of finding such a pattern goes up. Scores of other
patterns would have been equally surprising:
4444444 or 8888888, or 1212121, or 1234567,
or 7654321. Since we do not know in advance
what sort of pattern we are looking for, it is a good
bet that we can discover some kind of unusual
pattern, The only limit is our ingenuity in
searching for such patterns. As Aristotle once put
it, the improbable is extremely probable.



Jason and the Sun
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This man has written the

initial letters of the months:

J for January, F for Febru-
ary, and so on. Is the word
JASON a coincidence?

Here are the first letters of
the nine planets according
to their distances from the
sun. M for Mercury, v for
Venus, and so on. Is the
word SUN another coinci-
dence?

These two amusing coincidences underscore the
truth of Aristotle’s dictum. Another way to
demonstrate the probability of the improbable is
with a spinner that randomly selects a letter of the
alphabet. If you pick a word of, say, three letters
and bet that it will appear as a consecutive
sequence of letters obtained by 100 spins, it
would be an unfavorable bet. But if you bet on
the appearance of just any 3-letter dictionary
word, it would be a favorable bet.

You can use such a spinner to select letters,
writing them down one at a time and seeing how
long it takes until three consecutive letters form a
recognizable 3-letter word. Try for 4- and 5-letter
words. It is surprising how often such words occur.

A dramatic and weird touch can be added by
considering ways in which each word that you get
can be related to current events. “Eva,” for
instance, may be the name of someone you know,
or the word “hat” may remind you of someone
who lost a hat. Watch for combinations (FBI, IBM,
USA), abbreviations (Fla, Dec, Fri), and initials
(FDR, JFK). Connecting such “words” with events
is so easy that you can easily see how someone
might believe occult influences are at work in the
formation of these words!

The experiment explains why so many remark-
able coincidences occur in one’s lifetime. When
they happen, there is a strong tendency to believe
that mysterious forces are at work. To a statistician,
such coincidences are extremely probable. There
are millions and millions of ways that a coincidence
of some sort can arise in the multitude of events
that occur every day. Since the nature of the
coincidence is not specified in advance, it is like
the unspecified pattern of digits in 7 or the
unspecified word that turns up when letters are
picked at random. When the coincidence takes
place, it always seems too improbable to have
occurred by chance. What we forget is that for
every such coincidence, billions of other possible
coincidences that might have occurred didn't.



Crazy Clumps
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Even a shuffled deck of
cards will contain coinci-
dences. For instance,
almost always there will be
a clump of six or seven
cards of the same color.

Stars clump in groups
called constellations. Beans
tossed on a surface tend to
form little clumps. There is
an old saying: “Bad luck
comes in threes.”

The tendency of random events to “clump” in
various ways is a well-recognized phenomenon,
and entire books have been written about what
statisticians call clumping theory. The run of seven
3’s in m is an example of random clumping. If you
keep flipping a penny, or spinning a roulette wheel
and recording the colors and numbers, you will
find similar examples of long runs turning up with
surprising frequency,.

A striking experiment in clumping was
discovered by A. D. Moore, an engineer at the
University of Michigan. Moore calls it the
“nonpareil mosaic” because it uses large
quantities of nonpareils, a sugar candy
manufactured in the shape of tiny colored
spheres. Obtain enough red and enough green
nonpareils so that you can fill a glass bottle with
equal amounts of each. Shake the bottle until the
two colors are thoroughly mixed.

Inspect the sides of the bottle. You would expect
to see a homogeneous mix of colors, but instead
you see a beautiful mosaic made up of irregular
large red clumps interspersed with equally large
green clumps, The pattern is so unexpected that
even mathematicians, when they first see it,
believe that some sort of electrostatic effect is
causing spheres of like color to stick to one
another. Actually, nothing but chance is operating.
The mosaic is the normal result of random
clumping.

If this seems hard to believe, try this simple
experiment. On a sheet of graph paper, outline a
20-by-20 square. Take each cell in turn and color
it red or green, choosing the color by flipping a
coin. When the 400-cell square is fully colored,
you will see the same kind of mosaic that
appeared on the sides of the bottle.



Nonmathematical factors often do enter into
clumping. If cars were spaced at random along a
freeway and observed from a helicopter, they
would appear in clumps, but their actual clumping
is much greater than can be explained by chance
because drivers tend not to pass cars moving at
about the same speed as they are moving and to
speed up when there are long open spaces ahead.
The positions of towns on a map, the sequences
of rainy days, patches of clover and crabgrass on a
lawn, and endless other things provide instances
of clumping that exceed what is caused by chance.
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An Amazing Card Trick

- 7\ Here’s an astonishing card
paradox related to clumping
theory. First arrange a deck
so that the colors altermate.

Then cut the deck into two
parts, making sure the bot-
tom cards are opposite
colors.

Now shuffle one half into
the other with one thor-
ough riffle shuffle.

Take the cards from the top
in pairs. In spite of the shuf-
fle, every pair will be red
and black!
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This remarkable card trick is an example of how a
concealed mathematical structure will enter into
clumping and produce a result that seems
miraculous. Magicians know it as the Gilbreath
principle after Norman Gilbreath, a mathematician
and amateur magician, who discovered it in 1958.
Since then, hundreds of clever card tricks have
been based on it.

Here is an informal proof by mathematical
induction of why it works. The deck is cut so that
the bottom cards of each half are different. After
the first card falls from a thumb to the table, the
bottom cards of the two halves will be the same
color, and opposite the color of the card that fell. It
makes no difference, therefore, which of these two
cards falls next. In either case, a card of opposite
color will fall on top of the first card, producing a
pair on the table that do not match. The situation
is now exactly the same as before. The bottom
cards of the two halves do not match. Whichever
card falls, both the remaining bottom cards will be
the same color, so irrespective of which card falls
next, a second pair of nonmatching cards goes to
the table. And so on for all the rest of the cards in
the deck.



A good way to present the trick to friends is
secretly to prearrange the deck so that the colors
alternate. Ask someone to deal cards from the top
of the deck onto a pile until the pile contains
about 26 cards. (This is a way of making sure that
the bottom cards of the two portions do not
match.) Let him riffle shuffle the two halves
together. Hold this “shuffled” deck under a table
so that no one, including yourself, can see the
cards. Tell your audience you can “feel” the colors
with your fingers, and that you will take the cards
from the deck in pairs so that each pair is a red
and black card. All you need do, of course, is
simply take the pairs from the top of the deck.

Can this remarkable principle be generalized to
produce other magic tricks? Try the following
procedure. Arrange the deck in a sequence of
suits, such as SHCD, SHCD, SHCD, and so on.
Deal from the top to form a pile of about 26 cards
(the exact number does not matter!). This dealing
automatically reverses the order of the cards. Now
riffle shuffle the two halves together. Take the
cards from the top in quadruplets. Each set of four
will contain one card of each suit!

For another surprise, arrange the deck in four
sets of 13 cards each, with the cards of each set in
the order of Ace, 2, 3, 4, 5, 6, 7, 8,9, 10, jack,
queen, king, without regard to suits. Follow the
same procedure of dealing and shuffling as
before. Take the cards from the top in sets of 13.
Each will contain one card of each value!

For the ultimate generalization, arrange two
decks so the order of cards in one deck exactly
matches the order of cards in the other. Put one
deck on top of the other. Deal off the top to form
a pile of about 52 cards. Shuffle the two “decks,”
then divide the 104 cards exactly in half. Each half
will be a complete deck!
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The Voting Paradox

3 PreferAtoB
34PreferproC
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Suppose three persons—
Abel, Bums, and Clark—
are running for president.

A poll shows that 2/3 of the
voters prefer A to B, and
2/3 prefer B to C. Will
most voters prefer A to C?

Not necessarily! If voters
rank the candidates as
shown, a startling paradox
arises. Let’s let the candi-
dates explain it.

Mr. Abel: Two-thirds of
the voters like me better
than Burns.

Miss Bums: Two-thirds of
the voters like me better
than Clark.

™ Mr. Clark: Two-thirds of
the voters like me better
than Abel!




This paradox, which goes back to the eighteenth
century, is a famous example of a nontransitive
relation that can arise when people make pairwise
choices. The concept of transitivity applies to such
relations as “taller than,” “greater than,” “less
than,” “equals,” “earlier than,” and “heavier than.”
In general, when a relation R that holds for xRy
and yRz also holds for xRz, the relation is said to
be transitive.

The voting paradox boggles the mind because
we expect the relation prefers always to be
transitive. If someone prefers A to B, and B to C,
we naturally expect him or her to prefer A to C.
The paradox shows that this is not always the
case. A majority of voters prefer candidate A to B,
a majority prefer B to C, and a majority prefer C
to A. The situation is nontransitive! The paradox is
sometimes called the Arrow paradox after the
Nobel-Prize-winning economist Kenneth J. Arrow,
who showed from this and other logical
considerations that a perfect democratic voting
system is in principle impossible.

The paradox can arise in any situation in which
a decision must be made between three
alternatives that are ranked pairwise with respect
to three properties. Suppose A, B, and C are
three men who have proposed marriage to the
same woman, The rows of a matrix can be
interpreted to show how she ranks the three men
with three traits, such as intelligence, good looks,
and income. Taken by pairs, the woman may find
that she prefers A to B, B to C, and C to A!

Mathematician Paul Halmos proposed letting A,
B, and C stand for apple, blueberry, and cherry
pie. A restaurant offers only two of them at one
time. Matrix rows show how a customer ranks the
pies with respect to taste, freshness, and size of
slice. It is perfectly rational for such a customer to
prefer apple to blueberry, blueberry to cherry, and
cherry to apple!

For more on nontransitive paradoxes see the
following articles in Scientific American: my
Mathematical Games column (October 1974),
“The Choice of Voting Systems” by Richard G.
Niemi and William H. Riker (June 1976), and
Lynn Steen'’s Mathematical Games column on
voting systems (October 1980).
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Miss Lonelyhearts
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Miss Lonelyhearts, a statisti-
cian, is tired of sitting home
alone.

Miss Lonelyhearts: |
wish | knew some men who
weren'’t married. I think I'll
join a group for single peo-
ple.

Miss Lonelyhearts joined
two such groups. One eve-
ning both groups had par-
ties at Club Paradox. One
group met in the East
Room, the other in the
West Room.

Miss Lonelyhearts: Some
men have mustaches and
some don’t. Some men are
swingers and some are
squares. I'd like to meet a
swinger tonight. Should |
look for a man with a mus-
tache?

Miss Lonelyhearts made a
statistical study of the men
in the East group. She
found that the proportion of
mustached swingers was
5/11 or 35/77. The propor-
tion of cleanshaven swing-
ers was smaller. It was 3/7
or 33/77.

Miss Lonelyhearts: So—
when | attend the East
Room party, I'll go after the
men with mustaches!
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Her statistics for the West
group were similar. The
proportion of mustached
swingers was 84/126. This
was greater than 81/126 for
the cleanshaven swingers.

Miss Lonelyhearts: How
simple! At both parties, I'll
have a better chance to
meet a swinger if [ look for
men with mustaches.

By the time Miss Lonely-
hearts got to Club Paradox,
the two groups had decided
to combine. Everybody had
moved to the North Room.

Miss Lonelyhearts: What
shall I do now? If a mus-
tached man is my best bet
in each group, he should
still be the best bet. But I'd
better check out the com-
bined party to make sure.

When she finished her new
chart, she was flabber-
gasted. The proportions
had changed places! Now
her best bet was a man
without a mustache!



Miss Lonelyhearts: | had
to change my tactics, and
they worked! But I still don’t
understand it!

The curious paradox is easily modeled with
playing cards. Red cards stand for swingers, black
cards for squares. A large X on the back of a card
symbolizes a mustache. No X on the back
indicates no mustache.

Put an X on the back of five red cards and six
black cards. To these cards add three red and four
black that do not have X’s. Thus there are 18
cards altogether. They represent the men in the
East Room party.

Shuffle the 18 cards and spread them backs up.
If you wish to maximize your chances of drawing a
red card, should you pick one with an X or one
without an X? It is easy to calculate the odds, as
shown in the pictures, to see that your chance of
picking a red card is best if you take an X card.

The men in the West Room party are modeled
in the same way. Put X’s on the backs of six red
cards and three black cards. To these cards add
nine red and five black without X's. There are 23
cards in all. Shuffle and spread backs up. Again, it
is easy to show that if you wish to draw a red card,
your success is maximized by taking an X card.

Now combine the two sets into a deck of 41
cards. Shuffle and spread. It is hard to believe, but
if you perform the calculations correctly you will
find that, if you wish to draw a red card, your
chances now are higher if you select a card
without an X!
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Paradoxes like this can arise when statisticians
analyze such data as the result of drug testing. For
example, let the cards stand for the persons who
participated in two research tests. Let X indicate a
person given the drug, no X indicates a person
given a placebo. Red cards are persons who
improved, black cards are persons who did not.
Each test, separately analyzed, will indicate that
the drug had a more favorable effect than the
placebo. But when the results of both tests are
combined, the analysis indicates that the placebo
had the more favorable effect! The paradox shows
how difficult it is to design tests for which the
statistical results are always trustworthy.

An instance of this paradox occurred at the
University of California, Berkeley, in 1973, in
connection with a study of possible sex bias in
graduate school admissions. About 44 percent of
men applying for graduate work were admitted,
whereas only 35 percent of women were
admitted. Since the qualifications of the men and
women were roughly the same, this seemed a
clear case of sex bias.
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However, when the same data were examined
to determine in which departments the
discrimination occurred, it turned out, in essence,
that in each department women had a greater
chance of being accepted than men! How can this
be explained? The paradox arose because a far
higher percentage of women sought graduate
work in difficult subjects that had high rejection
rates. Taken major by major, a woman’s chance to
do graduate work was better than a man’s. Only
when all the data were combined did the bias
swing the other way. Was the university
exonerated by uncovering the source of the
paradox? Perhaps, but one wonders if a scheme
might be devised to make it more difficult to do
graduate work in those subjects women tend to
choose.



Hempel’s Ravens

A famous paradox about
black crows shows that Miss
Lonelyhearts is in good com-
pany. Even the experts are
still trying to understand it.

If only three or four crows
are observed to be black,
the scientific law that says:
“All crows are black” is
weakly confirmed. If mil-
lions of crows are seen to
be black, it is strongly con-
firmed.,

4 ) Crow: Caw, caw!I'm a
non-black crow. As long as
they never find me, they'll
never know their law is
false.

What about a yellow cater-
pillar? Could it be a con-
firming instance of the law?

To answer this, let’s first
state the law in a different
but logically equivalent
form: “All non-black objects
are not crows.”

Scientist: Aha! I've found
a non-black object—a yel-
low caterpillar. It's definitely
not a crow, therefore it con-
firms the law: “All non-
black objects are not
crows.” So it must also con-
firm the equivalent law: “All
crows are black.”

It is easy to find millions of
non-black objects that are
not crows, Are they, too,
confirming instances of the
law: “All crows are black”?

Professor Carl Hempel,
who invented this famous
paradox, believes that a
purple cow actually does
slightly increase the proba-
bility that all crows are
black. Other philosophers
disagree. What's your opin-
ion?
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This is the most notorious of many paradoxes
about confirmation theory that have been
discovered in recent times. “The prospect of being
able to investigate ornithological theories without
going out in the rain,” remarks Nelson Goodman
(see the next paradox), “is so attractive that we
know there must be a catch to it.”

The problem is to find the catch. Hempel’s
belief is that observing a non-black object that is
not a raven actually does confirm “all ravens are
black,” but only to an infinitesimal degree.
Consider the testing of a hypothesis about a small
number of objects, such as ten playing cards that
are face down on a table. The hypothesis is that
all the black cards are spades. We start turning the
cards face up, one by one. Clearly, each time we
turn over a black spade we have found a
confirming instance.

Now we express the same hypothesis in
different words: “All non-spade cards are red.”
Each card we turn that is not a spade, and that
also is red, certainly confirms the theory as first
stated. Indeed, if the first card is a black spade and
all the other nine cards are red non-spades, we
know the hypothesis is true.

The reason why this procedure seems strange
when we apply it to non-ravens that are not black,
says Hempel, is that the class of objects on earth
that are not ravens is so enormously large
compared to the number of ravens that the degree
to which a non-raven that is not black confirms
our hypothesis is negligible. Moreover, if we look
around a room for non-ravens, already knowing
there are no ravens in the room, we should not be
surprised to find no non-black ravens in the room,
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Yet if we do not have such additional
knowledge, finding a non-raven that is non-black
does, in a theoretical sense, count as a confirming
instance of the hypothesis that ravens are black.

Opponents of Hempel like to point out that
finding, say, a yellow caterpillar or a purple cow,
by the same reasoning, must also be a confirming
instance of the law, “all ravens are white.” How
can the same object confirm “all ravens are black”
and “all ravens are white” simultaneously? The
literature on Hempel’s paradox is enormous; the
paradox has a central role in the debate about
confirmation of knowledge, which is the subject of
the Scientific American article “Confirmation” by
Wesley C. Salmon (May 1973).



Goodman’s Grue

Another famous paradox of  The Hempel and Goodman paradoxes show how

confirmation theory is little we understand the precise way in which
based on the fact that many o . . sepe
objects change color at statistics enters into the scientific method. We do

some point in time, Green know that without this invaluable tool, science
apples ripen to red, hair

turns white in old age, siver  could not continue its eternal quest for the laws
tamishes. that control our mysterious universe.

Nelson Goodman calls an
object “grue” if it fulfills two
conditions. First, it is green
until the end of this century.
Second, it is blue after that.

(. —ioeeads ae e ™ Now consider two different
'3 g emeralds are 4™¢ laws: “All emeralds are
S green,” and “all emeralds

are grue.” Which law is best
confirmed?

Strangely enough, both are
equally confirmed! Every
observation ever made of
an emerald is a confirming
instance of each law, and
no one has ever observed a
counterinstance! It is not
easy to explain exactly why
one law is accepted and the
other is not.
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Paradoxes about motion, supertasks, time travel,
and reversed time
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From the smallest subatomic particle to the largest
galaxy, the universe is in a constant state of
change, its incredible patterns altering every
microsecond in the inexorable “flow” of time.

(I put “flow” inside quotation marks because it is
really the universe that flows. To say that time
flows is as meaningless as saying length extends.)

It is hard to imagine an actual world without
time. An object that existed only for zero seconds
would not exist at all. Or could it? In any case, the
flow of the universe is uniform enough to permit
measurements, and with measurements come
numbers and equations. Pure mathematics may
be thought of as “timeless,” but in applied
mathematics, from simple algebra to calculus and
beyond, vast areas deal with problems in which
time is a fundamental variable.

This chapter brings together a variety of famous
paradoxes about time and motion. Some of them,
such as Zeno's paradoxes, were hotly debated by
the ancient Greeks. Others such as the “dilation”
of time in relativity theory, and the infinity
machines that perform “supertasks,” are products
of this century. All of them should whet your
appetite for paradoxes and for mathematics as
well.

Here are some of the ways in which the
paradoxes can serve as jumpoff points into serious
mathematics and science:

The bicycle wheel paradox involves the cycloid
curve, a splendid introduction to curves more
complicated than the conic-section curves,

The frustrated skier dramatizes the power of
simple algebra to prove an unexpected result.

Zeno’s paradoxes, the rubber rope, supertasks,
and the trotting dog all introduce the concept of
limit, so essential to the understanding of calculus
and all higher mathematics. Their resolution relies
on Georg Cantor’s theory of infinite sets, which we
encountered in Chapter 2.

The worm on the rope is solved by using a
famous series, the harmonic series.

The paradoxes about backward time, tachyons,
and time travel introduce fundamental concepts
essential to the understanding of relativity theory.

The trick for avoiding time-travel paradoxes,
by assuming forking paths and parallel worlds,
will introduce you to a strange approach in
quantum mechanics called the “many-worlds
interpretation.”

The final paradox about the conflict between
determinism and indeterminism offers a brief
glimpse into one of the great perennial problems
of philosophy.
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Carroll’s Crazy Clocks
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Which clock keeps the best
time? A clock that loses a
minute a day or one that
doesn’t run at all?

Lewis Carroll argued this
way:

Carroll: The clock that
loses a minute a day is cor-
rect once every 2 years,
The stopped clock is correct
twice every 24 hours. So
the stopped clock keeps the
best time. Do you agree?

Alice is puzzled.

Alice: | know the stopped
clock is right whenever it's 8
o'clock. But how do I know
when it’s exactly 8?

Carroll: That's easy to
answer, my dear. You just
stand by the stopped clock
with a pistol in your hand.

Carroll: Keep your eyes
on the clock. At the precise
instant the clock is correct,
fire the pistol. Everyone
who hears the shot will
know it is exactly 8.

Lewis Carroll was the pen name of Charles L.
Dodgson, who taught mathematics at Christ
Church, one of the colleges of Oxford University,
England. His account of the two clocks can be
found in The Complete Works of Lewis Carroll
and in many other collections of Carroll's writings.

How did Carroll determine how often the slow-
running clock is correct? Since the clock loses a
minute a day, it will be correct again after losing
12 hours, which it does in 720 days.



The Perplexing Wheel

Lewis Carroll’s clock para-
dox is just a nonsense joke,
but here is one that isn’t.
Did you know that the tops
of bicycle wheels move
faster than the bottoms?

That's why the spokes in
the upper half are blurred
when a bicycle goes by.

Let’s look at two positions
of the wheel as it moves
along. Point A near the top
has gone much farther than
point B near the bottom.
Speed is distance traveled
per unit time, therefore
point A has gone much
faster than point B. Right?

When the speeds of the tops and bottoms of
rolling wheels are compared, it is, of course, their
ground speeds that one has in mind. One of the
best ways to explain this paradox is to consider
the curve called the cycloid. The cycloid curve is
generated by any point on the rim of a wheel as
the wheel rolls along a straight line. When the
point is touching the ground, its speed is zero. As
the wheel rolls, the point’s speed accelerates,
reaching its maximum when it is the top of the
wheel. It then decelerates until it returns to zero
speed when it touches the ground again. On
wheels with flanges, such as the wheels of trains, a
point on the flange actually moves backward in a
tiny loop below the level of the track.

The cycloid has many beautiful mathematical
and mechanical properties that are discussed in
Chapter 13, “The Cycloid: Helen of Geometry” in
my Sixth Book of Mathematical Games from
Scientific American. The chapter explains how to
draw a cycloid by rolling a coffee can.
Constructing this curve and working out its
equation can give better appreciation of its
elegance and its unusual properties.
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The Frustrated Skier
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Skier: What a great day
for skiing! I sure wish this
lift moved faster than 5
kilometers per hour.

If the skier wants to raise his
average speed to 10 kilom-

eters per hour for the round
trip up and down the slope,
how fast must he ski down?

15 kilometers per hour?
60? 100? It’s hard to
believe, but the only way
he can raise his average to
10 is by skiing down in zero
time!

At first you may think that this paradox depends
on the distance up and down the slope. This
variable, however, is not relevant to the problem.
The skier goes a certain distance up the slope at a
certain speed. He wants to come down at a speed
that will double his average speed for the round
trip. But in order to do this, he must go twice the
original distance in the same length of time it took
him to go up. Clearly, to do this he must come
down the slope in no time at all. Since this is
impossible, there is no way that he can raise his
average speed from 5 to 10 kilometers per hour.
This is easily proved by elementary algebra.



Zeno’s Paradoxes

4 ™ The ancient Greeks
invented many paradoxes
about time and motion,
One of the most famous is
Zeno’s argument about a
runner.

Zeno's runner reasoned:
Runner: Before | get to
the finish line, I must pass
the halfway point. Then [
must reach the 3/4 mark,
which is half the remaining
distance.

Runner: And before I run
the final quarter, 1 have to
reach another halfway
mark. These halfway marks
never end. I'll never get
there!

\
J

a w Suppose the runner takes 1

minute to go each half-seg-
ment. This time—distance
. graph shows how he gets
closer and closer to the goal
but never reaches it. Could
- 11 his argument be right?

DISTANCE

mX--

( N\ No, because the runner
does not take a minute for

g,;*ﬂ each half-segment. Each
|

segment is run in half the
time it takes for the preced-
ing one. He’ll reach the

- goal in just 2 minutes even
+ TrANCE though he must pass an
infinity of halfway points.

mx--

\

Zeno devised a famous par-
adox about Achilles. The
warrior wants to catch a tur-
tle 1 kilometer away.

When Achilles gets to the
spot where the turtle had
been, the turtle has moved
ahead about 10 meters.

But when Achilles goes the
10 meters, the turtle has
moved ahead again.
Turtle: You'll never catch
me, old pal. Whenever you
reach the spot where | last
was, I'll always be ahead by
some distance, even if it's
less than a hair!

Zeno knew, of course, that
Achilles could catch the tur-
tle. He was simply showing
the paradoxical conse-
quence of viewing time and
space as made up of an
infinite number of discrete
points that follow one
another like beads on a
string.
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In both of these paradoxes we must think of the
runners as being equivalent to points moving with
uniform speed along a straight line. Zeno knew
that a point moving from A to B does indeed get
there. Zeno’s paradoxes were designed to bring
out the difficulty encountered when one tries to
explain motion by breaking a line into distinct
points that lie “next” to one another, and time into
distinct instants that follow “after” one another.

Merely to show, as we did, that the runner does
reach B because the time required to run each
new half-segment is half the time required to run
the previous one, would not have satisfied Zeno.
He would have replied that just as there is always
another halfway point on the line to be reached,
so there is always another halfway instant of time
to be reached. In brief, the argument Zeno
applied to the line can also be applied to the time
sequence. The time gets closer and closer to 2
minutes, but there always remains an infinity of
instants yet to go. The same is true of the paradox
of Achilles and the turtle. At every step in the
infinite process, there always remains an infinity of
“next”’ steps to be made in both space and time.

Many philosophers of science agree with
Bertrand Russell's famous discussion of Zeno’s
paradoxes in the sixth lecture of his book Qur
Knowledge of the External World. Russell argues
that Zeno’s paradoxes were not effectively
answered until Georg Cantor developed his theory
of infinite sets.
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Cantor’s theory allows one to treat infinite sets
of points in space, or events in time, as completed
wholes rather than simply a collection of isolated
individual points and events. At the heart of
Zeno's paradoxes is the impossibility of viewing
segments of space and time as made up of an
infinity of members that nevertheless are as
discrete and separate from one another as
footsteps in the snow. The resolution of his
paradoxes demands a theory like Cantor’s, which
unites our intuitive notion of individual points and
events with a systematic theory of infinite sets.



The Rubber Rope

4 ™\ Here'’s a new paradox that
Zeno didn't think of. A
worm is at one end of a
rubber rope. The rope is 1
kilometer long.

1 kem
\ J
- "\ The worm crawls along the
rope at a steady pace of 1
centimeter per second.
After the first second, the
Y. rope stretches like a rubber

2km band to 2 kilometers. After

the next second, it stretches
to 3 kilometers, and so on.

Will the worm ever reach

\ J the end of its rope?

- N Your intuition tells you that
the worm will never reach
the end. But it does! How

&. long does it take?
----- Lt e e

The key to this problem is understanding that the
rope stretches uniformly like a rubber band. This
means that the worm is carried forward with the
stretching.

A good way to solve the puzzle is to measure
the worm’s progress after each second as a
fraction of the rope’s length after that second.
When the sum of these fractions is 1, the worm
has come to the end of its rope.

There are 100,000 centimeters in a kilometer,
so at the end of the first second the worm has
traveled (1/100,000)th of the rope’s length. After
the next second the worm crawls forward another
centimeter. This distance covers an additional
(1/200,000)th of the rope’s new length of 2
kilometers. After the third second the worm has
gone an additional (1/300,000)th of the rope’s
length of 3 kilometers, and so on. After k seconds
the worm’s progress, expressed as a fraction of the
entire rope, is

1 (1,111 1
100,000\1 2 3 4 k

The series inside the parentheses is known as
the harmonic series. Notice that the sum of the
terms from 1/2 through 1/4—that is, the sum of
1/3 and 1/4—exceeds 2 X 1/4 = 1/2. Similarly,
the sum of the terms from 1/4 out through 1/8
exceeds 4 x 1/8 = 1/2. Thus the sum of the
series from 1/1 out through 1/2* always exceeds
k x 1/2 = k/2, as you can see by bunching the
terms. First take the sum of two terms, then the
sum of the next four, then the next eight, and so
on. The partial sum of the harmonic series can be
made as large as one desires.
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The worm will reach the end of the rope before
2200000 seconds. A more refined estimate is e100.000
seconds, where e is the basis of the natural
logarithms (e is an irrational number slightly larger
than 2.7). This gives both the elapsed time in
seconds and the rope’s length in kilometers.

For the precise formula for determining a partial
sum of the harmonic series, see “Partial Sums of
the Harmonic Series” by R. P. Boas, Jr., and J. M.
Wrench, Jr., in American Mathematical Monthly
(vol, 78, October 1971, pp. 864-870). The final
length of the rope proves to be enormously longer
than the diameter of the known universe, and the
time it takes the worm to reach the end vastly
exceeds the estimated age of the universe. Of
course, the problem is about an idealized worm
that represents a point on an idealized rope. A real
worm would die after barely getting started on the
trip, and a real rope would have to stretch so thin
that it would consist of molecules separated by
inconceivably vast spaces.
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Regardless of the problem’s parameters, which
are the initial length of the rope, the worm’s
speed, and how much the rope stretches after
each unit of time, the worm always reaches the
rope’s end in a finite time, Good problems arise
by altering the way the rope stretches. For
example, what happens if the rope stretches in a
geometric progression, say by doubling its length
after each second? In this case, the worm never
gets to the rope’s end.



Supertasks

Philosophers are now argu-
ing about a new class of
time paradoxes called
supertasks. One of the sim-
plest involves a lamp. A
pushbutton turns it on and
off.

The lamp is turned on for 1
minute, then off for 1/2
minute, on for 1/4 minute,
and so on. This series ends
in just 2 minutes. After it
ends, will the lamp be on or
off?

Every odd push of the but-
ton tums the lamp on.
Every even push tums it off.
If the lamp is on at the fin-
ish, it means the last count-
ing number is odd. If off at
the finish, the last number is
even. But there is no last
counting number. The lamp
must be on or off, but there
is no way to know which!

Philosophers of science are not yet agreed on how
to clear up paradoxes involving “supertasks”—
tasks performed by what are called “infinity
machines.” The lamp paradox is known as the
Thomson lamp after James F. Thomson who first
wrote about it. Everyone agrees that a Thomson
lamp cannot be constructed, but that’s not the
point. The point is whether the lamp is logically
conceivable if certain assumptions are made.
Some argue that the lamp is a meaningful
“thought experiment.” Others contend that it is
nonsense.

The paradox is disturbing because there seems
to be no logical reason why the lamp, like Zeno’s
runner, cannot complete an infinite sequence of
ons and offs. If Zeno’s runner can cover an infinity
of halfway points in 2 minutes, why cannot the
lamp’s idealized switch be turned an infinity of
times to end the sequence in exactly 2 minutes?
But if the lamp can do this, it seems to prove that
there is a “last” counting number, which is absurd.

The philosopher Max Black has given the same
paradox in the form of an infinity machine that
transfers a marble from tray A totray Bin 1
minute, then in 1/2 minute it puts the marble back
on tray A, and in the next 1/4 minute it puts the
marble on B, and so on in the same time-halving
series as before. This series converges and ends
precisely after 2 minutes. Where is the marble? If it
is on either tray, it implies that the last counting
number is odd or even. Since there is no last
counting number, both possibilities seem to be
eliminated. But if the marble is not on a tray,
where is it?

If you are interested in supertasks, you will find
the basic papers reprinted in Zeno’s Paradoxes, a
collection of essays edited by Wesley C. Salmon,
and the paradoxes analyzed at length in Adolf
Griinbaum’s Modemn Science and Zeno's
Paradoxes.
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Mary, Tom, and Fido
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Here’s a supertask per-
formed by a dog. At the
start, Fido is with his master
Tom. Mary is 1 kilometer
away.

Tom and Mary walk toward
each other at 2 kilometers
per hour. Fido, who loves
them equally, trots back
and forth between them at
8 kilometers per hour.
Assume that he makes each
turn instantaneously.

Fido's path is easy to follow
on this time—distance
graph. When Tom and
Mary meet at the center, is
Fido facing Tom or Mary?

That question is as impossi-
ble to answer as whether
the lamp is on or off. But
we can help Tom figure out
how far the dog has run.
Tom: Darn it, Mary, I've
got to sum a complicated
series of zigs and zags.

Mary: No you don't, you
dummy. We each walk 2
kilometers per hout, so we
each go half a kilometer in
15 minutes. Since we
started 1 kilometer apart,
we met at the end of 15
minutes.

Mary: Fido trots at 8
kilometers per hour, so in a
quarter of an hour he’s
gone a quarter of that dis-
tance, or 2 kilometers.
Tom: By golly, you're
right! 1 don’t even need this
calculator!

Suppose that Tom, Mary,
and Fido start at the middle
of the same path. Tom and
Mary walk backward at the
same rate as before, while
Fido trots back and forth
between them. When Tom
and Mary reach the ends of
the path, where is Fido?

It seems impossible, but the
dog can be anywhere
between Tom and Mary! If
you don't believe it, put
Fido at any spot between
them and start the event
forward in time. At the fin-
ish, all three will be together
at the center.



The first problem, in which Mary and Tom walk
toward each other while Fido trots back and forth
between them, is a classic problem that has many
different story lines. Sometimes it is a bird that
flies back and forth between two approaching
locomotives, sometimes a fly that buzzes back and
forth between two approaching bicycles.

A story is told about the eminent Hungarian
mathematician, John Von Neumann. Someone
gave him a version of this problem. Von
Neumann thought a moment before he supplied
the correct answer. The person who presented the
problem congratulated him. “Most people,” he
said, “think they have to solve it the hard way by
summing an infinite series of path segments.” Von
Neumann looked surprised. “But that’s what |
did,” he said.

Which way is Fido facing by the time Mary and
Tom meet? This is similar to asking whether the
Thomson lamp is on or off, or whether the marble
is in tray A or B. It seems as if the dog must be
facing either Tom or Mary, but in each case the
answer implies that the last counting number,
applied to the infinite sequence of zigs and zags, is
either odd or even.

When we time-reverse the process by starting
with Mary, Tom, and Fido in the center of the
path, and move Mary and Tom backward while
Fido runs back and forth as before, another
paradox arises. Our intuition tells us that if a well-
defined procedure is time-reversed, in the sense
that all the motions go the other way, we must
end exactly as we started. The curious thing about
this case is that the procedure is no longer well-
defined when it is time-reversed. When the event
goes forward in time, it ends with Fido exactly at
the center. But when the same event is run
backward, Fido’s position at the finish cannot be
determined. The dog can be at any point along
the path.

For a more detailed discussion of this paradox,
see Wesley Salmon’s analysis in the Mathematical
Games department of Scientific American,
December 1971. This problem and the previous
paradoxes about supertasks and runners are
descriptive introductions to the concept of limit as
well as applications of summing a geometric
series.

Fido’s zigzag path is similar to the path of a
bouncing ball. Here is a simple bouncing ball
problem. Suppose an ideal ball is dropped from a
height of 1 meter. It always bounces to one-half its
previous height. If each bounce takes a second,
the ball will bounce forever. But, like Zeno’s
runner, the lamp, the marble machine, and Fido,
each segment of the ball’s path is covered in less
time than the previous one. In this case each
successive bounce takes 1/\/2 times the length of
the previous bounce. The time sequences also
converge to a limit, which means that the ball
stops bouncing after a finite time, even though it
makes (in theory) an infinite number of bounces.
The ball travels a distance of 1 +1/2+ 1/
4+ -+ + 1/n=2 meters, not counting the
initial drop.

Suppose the ball always bounces to one-third
its previous height. How far does it travel before it
comes to rest?
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Can Time Go Backward?
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When certain motions are
reversed, such as a person
walking backward or a car
going backward, it almost

seems as if ime has been

reversed.

This familiar song . . .

... sounds funny when it is
played backward.

Most events in life are
impossible to reverse.

Time is like an arrow that
always points in the same
direction. Even when a
song is played backward,
the notes still follow one
another in forward time.

We cannot see the future,
but we can look into the
past. When you see a star a
thousand light-years away,
you are seeing it the way it
looked a thousand years
ago.

But seeing the past is not
the same as entering it. Will
it ever be possible to get
into a time machine and
actually visit the past or
future?



Consider what kinds of events can be “time-
reversed” in the sense of reversing the direction of
motion, and what kinds cannot. A good way to
make the distinction clear is to suppose that an
event is being photographed by a motion picture
camera. Later, the picture is shown on a screen,
but the film is run backward. What sort of events
will seem to violate natural law when run
backward? What sort will not?

For example, a motion picture of a car moving
backward does not appear impossible. Perhaps
the driver is simply backing up his car. But a
motion picture of a diver coming feet first out of
the water and going back up to a diving board is
immediately recognized as a sign that a film has
been reversed. The same is true of a motion
picture that shows a broken egg coming together
again on the floor and hopping up to a person’s
hands. Such an event could never happen in the
actual world.

Even when an event is “time-reversed” by
changing the direction of motion, like playing a
record backward, the event is still going forward in
time. Arrows normally move in the direction they
are pointing. Suppose you saw an arrow travel
backward through the sky and end in an archer’s
bow. It would reach the bow at a later time than
when it was in midair. Sir Arthur Eddington once
compared time to a symbolic arrow that always
points in the same direction. Events in our
universe seem relentlessly to go from past to
future, never from future to past.

In recent years physicists and cosmologists have
been speculating about the possibility of events
going the “other way” in other universes. And
there is an interpretation of quantum mechanics,
by Nobel Laureate Richard Feynman, in which
antiparticles are regarded as particles momentarily
going backward in time! You can read about these
fantastic speculations in the last four chapters of
the second edition of my Ambidextrous Universe.
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Time Machines
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Professor Brown has just
gone back 30 years in time.
He is looking at himself
when he was a baby.
Brown: Suppose | killed
this baby. Then there would
be no one to grow up and
become Professor Brown!
Would I suddenly vanish?

Now Professor Brown has
traveled 30 years into the
future. He is carving his
name on an oak tree out-
side his laboratory.

The professor returned to
the present, and a few
years later decided to chop
down the oak tree, When
he finished, he became very

perplexed.

Brown: Hmmm. Three
years ago | went 30 years
into the future and carved
my name on this tree. What
will happen, 27 years from
now, when | arrive from the
past? There won'’t be any
tree. Where did that tree
come from that I carved my
name on?

Hundreds of science fiction stories, motion
pictures, and television shows have been written
about time travel to the past or future. The classic
story of this type is The Time Machine by H. G.
Wells.

Is time travel logically possible or does the
notion lead to contradictions? It is clear from the
paradoxes that if we assume there is one single
universe, moving forward in time, any attempt to
enter the past can lead to a logical absurdity.
Consider the first paradox, in which a time traveler
enters his own past and sees himself as a baby. If
he kills the baby, he will both exist and not exist. If
the baby, which grew up to become Professor
Brown, is killed, then where does Professor Brown
come from?

The second paradox is more subtle. There is no
contradiction about Professor Brown going
forward in time and carving his name on the tree.
The contradiction arises after he has returned to
the present—that is, after he has gone backward
in time. By chopping down the tree, he eliminates
it from the future, So we have a contradiction
again. At a certain time in the future, the tree both
exists and does not exist.



The Tachyon Telephone

In recent years physicists
have speculated about sub-
atomic particles called tach-
yons. Tachyons move faster
than light. According to rel-
ativity theory, if tachyons
exist they must also move
backward in time.

Professor Brown thinks he
has invented a tachyon tele-
phone for communicating
with his friend, Dr. Gamma,
in another galaxy.

Dr. Brown is telling his stu-
dents about an experiment:
Brown: Tomorrow at noon
I will ring Dr. Gamma on
my tachyon phone. I'll ask
him to hang up, count the
number of helicopters out-
side his window, then call
me back with the number,
Assistant: It won’t work,
sir.

Brown: And why not,
young lady?

Assistant: Because tach-
yons go back in time. Dr.
Gamma will get your call an
hour before noon. His
retum call will go back
another hour, so you’ll get
your answer 2 hours before
N / vyou ask the question! That's
not possible.

This episode proves it is not necessary for a
person to move back in time to generate a
paradox. If any sort of message or object is sent
back in time, contradictions can arise. For
example, Professor Brown might say to himself on
Monday: “Next Friday [ will put my necktie in this
time machine and send it back to Tuesday, which
is tomorrow.” Sure enough, on Tuesday he finds
his tie in the machine. Suppose he then burns the
tie. When Friday arrives, there will be no tie to
send back. Once more, the tie seems to both exist
and not exist on Friday. It existed when Professor
Brown sent it back to Tuesday, but now it is Friday
again and there is no tie to send back!

Tachyons, however, are taken quite seriously by
many physicists. (See “Particles That Go Faster
Than Light” by Gerald Feinberg, Scientific
American, February 1970.) According to relativity
theory, the speed of light is an upper limit for
ordinary particles. Physicists have speculated,
however, on the possible existence of particles,
which Feinberg named tachyons, that always
move much faster than light. For tachyons, the
speed of light is a lower limit. Relativity theory
makes it necessary to assume that such particles, if
they exist, must move backward in time like the
lady in the familiar limerick:

There was a young lady named Bright
Who traveled much faster than light.
She set out one day
In her relative way,
And returned on the previous night.

The telephone paradox does not prove that
tachyons cannot exist, but it does show that if they
do, there is no way they could be used for
communication, If there were, we would have the
logical contradiction explained above. For more
on this paradox and its implications for tachyon
research, see G. A. Benford, D. L. Book, and W.
A. Newcomb, “The Tachyon Antitelephone,”
(Physical Review, D, vol. 2, July 15, 1970).
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Parallel Worlds
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Science fiction writers have
thought of a fantastic way
to avoid time travel para-
doxes. They imagine that
whenever a time traveler
enters the past, the universe
splits into two identical
halves, each in a different
space-time.

Here’s how it works. Sup-
pose you go back to 1930
and shoot Hitler. As soon as
this happens, the universe
divides into parallel worlds
or timelines,

Universe | goes on with Hit-
ler alive. Universe Il goes
on with Hitler dead.

If you retum to the present
of Universe Il you'll find old
newspapers telling how Hit-
ler was killed. The world
you left, in which Hitler was
not killed, is a world to
which you can never retum.

This forking universe theory
has a lot of strange possibil-
ities. Suppose you go back
one year and shake hands
with yourself:

Feemster: Hi, Feemster.
Feemster: Glad to meet
you, Feemster.

Any time later, either of you
could hop in the time
machine again and go back
to meet two duplicates of
yourself. Now there are
three Feemsters. By repeat-
ing this, hundreds of
Feemsters could be created.



The pictures describe one fantastic method of
permitting backward time travel without
encountering logical contradictions. Science fiction
writers were the first to think of it, and scores of
science fiction stories have been based on it. The
trick is to assume that whenever a person or thing
enters the past, the universe splits into parallel
worlds. If this occurs, there is no longer a
contradiction between Professor Brown both
existing and not existing, or between the tree
existing and not existing. If there are parallel
worlds, Brown (or the tree) may exist in one but
not the other.

Amazingly, there is an interpretation of quantum
mechanics based on this concept of forking
universes. Called the “many-worlds theory,” there
is an entire book about it: The Many-Worlids
Interpretation of Quantum Mechanics, edited by
Bryce S. DeWitt and Neill Graham. According to
this wild theory, first advanced in 1957 by Hugh
Everett [II, the universe branches at every
microsecond into countless parallel worlds, each a
possible combination of microevents that couid
occur at that instant. This leads to an incredible
vision of an infinity of universes that represent

every possible combination of possible events. As
Frederic Brown described the vision in his science
fiction novel, What Mad Universe:

If there are infinite universes, then all possible
combinations must exist. Then, somewhere,
everything must be true. . . . There is a universe
in which Huckleberry Finn is a real person, doing
the exact things Mark Twain described him as
doing. There are, in fact, an infinite number of
universes in which a Huckleberry Finn is doing
every possible variation of what Mark Twain might
have described him as doing. . . . And infinite
universes in which the states of existence are such
that we would have no words or thoughts to
describe them or to imagine them.
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Time Dilation
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Traveling into the past cre-
ates such wild paradoxes
that no scientist takes it seri-
ously. But travel into the
future is another matter.
Suppose a spaceship leaves
earth and travels at almost
the speed of light.

The faster a spaceship trav-
els, the slower its time goes.
Time would seem normal to
astronauts in the ship, but
to us they would seem like
statues.

The spaceship goes to
another galaxy and returns.
For astronauts on the ship,
the trip seems to last only
five years. But when the
ship lands back on earth,
thousands of earth years
will have gone by!

~\

This kind of time travel
does not lead to paradox,
but the astronauts are now
trapped in earth’s future.
They cannot come back.



Contradictions arise only from travel into the past,
not into the future. After all, we are all time
travelers moving into the future whether we like it
or not. When you go to sleep at night you expect
to wake up in the near future. A person could be
placed in suspended animation and be revived,
say, a thousand years later. Many science fiction
novels and stories have been based on this kind of
“time travel,” notably When the Sleeper Wakes by
H. G. Wells.

As our cartoon panels show, a quite different
way of traveling into the future is provided by
Einstein’s theory of relativity. According to the
special theory of relativity, the faster an object
moves, the slower its time goes relative to a
stationary observer. For example, if a spaceship
has a speed close to that of light, time on the ship
is much slower than time on earth. On the ship,
astronauts would not be aware of anything
unusual. Their clocks would seem to run normally,
their hearts would beat at the usual rate, and so
on. But if there were any way that people on earth
could observe them, they would seem to be
moving so slowly that they would appear like
statues. If the astronauts in turn could observe
life on earth, events would also seem to be
going much more slowly. To return, however,
the astronauts would be forced to change from
one frame of reference to another—a change
that results in their coming back to an earth
thousands of years in its future. See the
chapter on the twin paradox in my Relativity
Explosion for details and references.

The reason we do not observe these effects in
everyday life is that they become significant only
at velocities close to the speed of light, conven-
tionally symbolized by ¢, which is about 186,000
miles per second. The simple formula relating
the length of time, T, measured by earthbound
clocks, compared to the interval T', measured
by clocks on a spaceship traveling at a constant
velocity v with respect to the earth is

Substitute any commonly encountered velocity
for v in the expression under the radical sign and
you will get a value for this expression so close to
1 that T and T’ will be essentially equal. But if you
give v a value of .5¢ or .75¢ or .9¢c (velocities that
are reached by high-speed subatomic particles),
the time dilation becomes large enough to
measure in the laboratory. Such measurements
provide strong confirmations of the special theory
of relativity.
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Fate, Chance, and Free Will

Although physicists are
learning more and more
about time, its essence
remains a dark mystery.
One of the biggest ques-
tions is whether the future
is completely determined.

Determinist: Que serq,
sera. Whatever will be, will
be. Life is like a movie. We
are the creatures on the
screen. We think we have
free wills. Actually, we are
just acting out predeter-
mined events,

4 \ Indeterminist: The
future is only partly deter-
mined. We can change
things by using our will.
History has genuine sur-
prises.
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Scientists, philosophers, and ordinary people
divide sharply over the question of whether the
future is completely determined by the past. A
determinist believes that the total state of the
universe at any given moment fully determines the
total state of the universe at any future moment.
This was Einstein’s personal belief. One of the
greatest of all philosophers who espoused
determinism was Benedict de Spinoza, and
Einstein considered himself a Spinozist. This was
one reason why Einstein could never accept
quantum theory as being final, because in
quantum theory chance plays a fundamental role
in determining events on the microlevel. “I do not
believe God plays dice with the universe,” was
how Einstein once expressed it.

An indeterminist believes that the future of the
universe is determined only in part by its present
state. He need not believe in free will. He may
believe no more than that the role of chance on
the microlevel prevents the future from being
completely determined. In addition, he may also
believe that living creatures, and especially
humans, possess “free will” that gives them the
power to alter significantly the future in ways that
could not be predicted even by a superbeing who
knew everything there was to know about the
universe’s present state. Charles Peirce and
William James were two eminent American
philosophers who championed the indeterminist
cause.



These profound philosophical questions are
intimately bound up with the nature of time and
with what is meant when we say that one event
“causes” another. No one doubts that
mathematics can be applied to our measurements
of the universe in such a way that many events
can be predicted with almost perfect accuracy: the
time of the next solar eclipse, for example. And no
one denies that other events, such as the next fall
of a die or what the weather will be next week,
cannot in practice be predicted precisely because
the causal factors are too complex.

The big question is whether the basic laws of
the universe are completely deterministic, or
whether genuine novelty is created by pure
chance on the microlevel, or by the free will of
living creatures on the macrolevel, or perhaps by
both. These questions were debated by the
ancient Greeks, and scientists, philosophers, and
everyone else have been debating them ever
since.
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